Что такое конденсатор и как он работает?

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.Что такое конденсатор и как он работает?
В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.Что такое конденсатор и как он работает?

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.Что такое конденсатор и как он работает?

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.Что такое конденсатор и как он работает?

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Что такое конденсатор и как он работает?

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Что такое конденсатор и как он работает?

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Post Views:
1 480

Применение конденсаторов в электротехнике

В данном пункте разберемся с типами конденсаторов, но уже не по конструкции, а по применению.

Начнем изучение с пусковых конденсаторов. Как известно у электродвигателей пусковой ток гораздо выше, чем номинальный рабочий ток. И так как конденсатор может отдать ток очень большой величины, то параллельно лини питания подключается элемент большей емкости. Если таким же образом установить конденсатор после трансформатора и диодного моста, то его уже можно будет называть сглаживающим. Дело в том, что скорость зарядки конденсатора велика, и он будет заряжаться пиками, полученными от выпрямленного переменного напряжения.

Что такое конденсатор и как он работает?Пусковой и сглаживающий конденсатор

Может возникнуть вопрос, почему после выпрямления переменного тока напряжение поднимается? Переменное напряжение обычно считается как среднеквадратичное, но в вершине своей амплитуды оно имеет гораздо выше значение, и конденсатор заряжается этими пиками и стремится держать это максимальное напряжение.

В импульсных блоках питания для сглаживания применяются одновременно разные типы конденсаторов (обычно оксидные и керамические), подключенных параллельно. Электролитические элементы ввиду своей большой емкости хорошо сглаживают низкочастотные пульсации большой амплитуды. А керамические конденсаторы хороши тем, что имеют минимальное внутреннее сопротивление и хорошо сглаживают высокочастотные пульсации.

Что такое конденсатор и как он работает?

Чтобы перейти к следующим сценариям применения, нужно принять тот факт, что конденсатор проводит переменный ток. Разберемся подробнее. В тот момент, пока конденсатор заряжается, по цепи передвигаются заряженные частицы (что и является течением тока). При постоянном токе движение частиц в цепи происходит только в то время, пока конденсатор заряжается. При переменном же токе полярность постоянно меняется и конденсатор будет постоянно заряжаться, и из-за этого будет поддерживаться течение тока. Уменьшая емкость конденсатора можно ограничивать мощность, подаваемую к нагрузке. При одинаковой емкости, но увеличивая частоту переменного тока и соответственно процесса зарядки, можно пропустить через конденсатор ток большей величины. Использующие такой принцип работы конденсаторы называются гасящими или балластными.

Что такое конденсатор и как он работает?

Разделительные конденсаторы (межкаскадные) как правило используют на звуковом усилении. Для того, чтобы транзистор усиливал сигнал, нужно переменный звуковой сигнал сместить полностью в постоянную сторону (перемещение переменного синуса в одну из полярностей). По сути получается постоянный, но пульсирующий ток. Транзистор полученный результат усиливает, и остается подать сигнал на динамик. Но это невозможно, так как ток имеет постоянную составляющую. Если после усиливающего каскада поставить конденсатор, то он вычтет из сигнала всю постоянную составляющую. В итоге получится чистый синусоидальный сигнал. Если уменьшить емкость используемого конденсатора, то можно обрезать низкие частоты. Данные частоты имеют большую ширину волны и не впишутся в меньшую емкость компонента.

В заключение стоит отметить, что конденсаторы применяются в паре с другими радиокомпонентами. Такие связки используются для создания всевозможных колебательных контуров, частотных фильтров и цепей обратной связи.

Конструктивные особенности конденсаторов

Воздушные конденсаторы — широко применяются в радиоприёмниках и радиостанциях. В качестве изолятора в них используется воздух. Такие конденсаторы хорошо работают на высоких частотах.

Что такое конденсатор и как он работает?

Керамические конденсаторы — имеют широкий интервал диэлектрической проницаемости. В свою очередь это позволило заключить в небольшой керамический корпус большие значения конденсаторных емкостей.

Пленочные конденсаторы — способны выдерживать большие токи, но имеют сравнительно небольшую емкость. Пленочные конденсаторы одни из самых стойких конденсаторов к электрическому пробою.

Что такое конденсатор и как он работает?

Полимерные конденсаторы — малое сопротивление и высокий импульсный ток, а также постоянный температурный коэффициент, позволили широко использовать полимерные конденсаторы в импульсных источниках и многих других устройствах.

Что такое конденсатор и как он работает?

Электролитические конденсаторы — один из самых распространённых видов конденсаторов

Все электролитические конденсаторы являются поляризованными, то есть, при их подключении важно соблюдать правильную полярность

Выбор пускового конденсатора для электродвигателя

Что такое конденсатор и как он работает?

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Применение

Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:

  • построение цепей обратной связи, фильтров, колебательных контуров;
  • использование в качестве элемента памяти;
  • для компенсации реактивной мощности;
  • для реализации логики в некоторых видах защит;
  • в качестве датчика для измерения уровня жидкости;
  • для запуска электродвигателей в однофазных сетях переменного тока.

С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.

Что такое конденсатор?

В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.

Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.

Маркировка

Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:

  • К – конденсатор;
  • Б, К, С, Э и т. д – тип диэлектрика, например: К – керамический, Э – электролитический;
  • На третьем месте стоял символ, обозначающий особенности исполнения.

В данной системе маркировки иногда первую букву опускали.

В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8

Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения

Рис. 8. Маркировка конденсаторов

  • Ёмкость от 0 до 999 пФ указывают в пикофарадах, например: 250p:
  • от 1000 до 999999 пФ – в нанофарадах: n180;
  • от 1 до 999 мкФ – в микрофарадах: 2μ5;
  • от 1000 до 999999 мкФ – в миллифарадах: m150;
  • ёмкость, больше значения 999999 мкФ, указывают в фарадах.

Принцип работы

В цепи постоянного тока положительные заряды собираются на одной пластине, отрицательные — на другой. За счет взаимного притяжения частицы удерживаются в приборе, а диэлектрик между ними не дает соединиться. Тоньше диэлектрик — крепче связаны заряды.

Конденсатор берет нужное для заполнения ёмкости количество электричества, и ток прекращается.

При постоянном напряжении в цепи элемент удерживает заряд до выключения питания. После чего разряжается через нагрузки в цепи.

Переменный ток через конденсатор движется иначе. Первая ¼ периода колебания — момент заряда прибора. Амплитуда зарядного тока уменьшается по экспоненте, и к концу четверти снижается до нуля. ЭДС в этот момент достигает амплитуды.

Во второй ¼ периода ЭДС падает, и элемент начинает разряжаться. Снижение ЭДС вначале небольшое и ток разряда, соответственно, тоже. Он нарастает по той же экспоненциальной зависимости. К концу периода ЭДС равна нулю, ток — амплитудному значению.

Что такое конденсатор и как он работает?Watch this video on YouTube

В третьей ¼ периода колебания ЭДС меняет направление, переходит через нуль и увеличивается. Знак заряда на обкладках изменяется на противоположный. Ток уменьшается по величине и сохраняет направление. В этот момент электрический ток опережает по фазе напряжение на 90°.

В катушках индуктивности происходит наоборот: напряжение опережает ток. Это свойство стоит на первом месте при выборе, какие цепи использовать в схеме: RC или RL.

В завершении цикла при последней ¼ колебания ЭДС падает до нуля, а ток достигает амплитудного значения.

«Ёмкость» разряжается и заряжается по 2 раза за период и проводит переменный ток.

Это теоретическое описание процессов. Чтобы понять, как работает элемент в цепи непосредственно в устройстве, рассчитывают индуктивное и емкостное сопротивление цепи, параметры остальных участников, и учитывают влияние внешней среды.

Переменный ток

Господа, в сегодняшней статье я хотел бы рассмотреть такой интересный вопрос, как конденсатор в цепи переменного тока

. Эта тема весьма важна в электричестве, поскольку на практике конденсаторы повсеместно присутствуют в цепях с переменным током и, в связи с этим, весьма полезно иметь четкое представление, по каким законам изменяются в этом случае сигналы. Эти законы мы сегодня и рассмотрим, а в конце решим одну практическую задачу определения тока через конденсатор.

Господа, сейчас для нас наиболее интересным моментом является то, как связаны между собой напряжение на конденсаторе и ток через конденсатор для случая, когда конденсатор находится в цепи переменного сигнала.

Почему сразу переменного? Да просто потому, что конденсатор в цепи постоянного тока ничем не примечателен. Через него течет ток только в первый момент, пока конденсатор разряжен. Потом конденсатор заряжается и все, тока нет (да-да, слышу, уже начали кричать, что заряд конденсатора теоретически длится бесконечно долгое время, да еще у него может быть сопротивление утечки, но пока что мы этим пренебрегаем). Заряженный конденсатор для постоянного тока – это как разрыв цепи. Когда же у нас случай переменного тока – тут все намного интереснее. Оказывается, в этом случае через конденсатор может протекать ток и конденсатор в этом случае как бы эквивалентен резистору с некоторым вполне определенным сопротивлением (если пока забить забыть про всякие там сдвиги фазы, об этом ниже). Нам надо каким-нибудь образом получить связь между током и напряжением на конденсаторе.

Пока мы будем исходить из того, что в цепи переменного тока находится только конденсатор и все. Без каких-либо других компонентов типа резисторов или индуктивностей. Напомню, что в случае, когда у нас в цепи находится исключительно одни только резисторы, подобная задача решается очень просто: ток и напряжения оказываются связанными между собой через закон Ома . Мы про это уже не один раз говорили. Там все очень просто: делим напряжение на сопротивление и получаем ток. А как же быть в случае конденсатора? Ведь конденсатор-то это не резистор. Там совсем иная физика протекания процессов, поэтому вот так вот с наскока не получится просто связать между собой ток и напряжение. Тем не менее, сделать это надо, поэтому давайте попробуем порассуждать.

Популярные статьи  Как сделать ремонт газонокосилки своими руками?

Кто-нибудь может возразить, что в той статье про силу тока запись была через Δq и Δt – некоторые весьма малые величины заряда и времени, за которое этот заряд проходит через сечение проводника. Однако здесь мы будем применять запись через dq и dt – через дифференциалы. Такое представление нам потребуется в дальнейшем. Если не лезть глубоко в дебри матана, то по сути dq и dt здесь особо ничем не отличаются от Δq и Δt

Безусловно, глубоко сведущие в высшей математике люди могут поспорить с этим утверждением, но да сейчас я не хочу концентрировать внимание на данных вещах

Итак, выражение для силы тока мы вспомнили. Давайте теперь вспомним, как связаны между собой емкость конденсатора С, заряд q, который он в себе накопил, и напряжение U на конденсаторе, которое при этом образовалось. Ну, мы же помним, что если конденсатор накопил в себе какой-то заряд, то на его обкладках неизбежно возникнет напряжение. Про это все мы тоже говорили раньше, вот в этой вот статье . Нам будет нужна вот эта формула, которая как раз и связывает заряд с напряжением

Давайте-ка выразим из этой формулы заряд конденсатора:

А теперь есть очень большой соблазн подставить это выражение для заряда конденсатора в предыдущую формулу для силы тока. Приглядитесь-ка повнимательнее – у нас ведь тогда окажутся связанными между собой сила тока, емкость конденсатора и напряжение на конденсаторе! Сделаем эту подстановку без промедлений:

Емкость конденсатора у нас является величиной постоянной

. Она определяетсяисключительно самим конденсатором , его внутренним устройством, типом диэлектрика и всем таким прочим. Про все это подробно мы говорили в одной из прошлых статей . Следовательно, емкостьС конденсатора, поскольку это константа, можно смело вынести за знак дифференциала (такие вот правила работы с этими самыми дифференциалами). А вот с напряжениемU нельзя так поступить!Напряжение на конденсаторе будет изменяться со временем. Почему это происходит? Ответ элементарный: по мере протекания тока на обкладках конденсатора, очевидно, заряд будет изменяться. А изменение заряда непременно приведет к изменению напряжения на конденсаторе. Поэтому напряжение можно рассматривать как некоторую функцию времени и его нельзя выносить из-под дифференциала. Итак, проведя оговоренные выше преобразования, получаем вот такую вот запись:

В чем отличие полярного и неполярного?

Неполярные допускают включение конденсаторов в цепь без учета направления тока. Элементы применяются в фильтрах переменных источников питания, усилителях высокой частоты.

Полярные изделия подсоединяют в соответствии с маркировкой. При включении в обратном направлении прибор выйдет из строя или не будет нормально работать.

Полярные и неполярные конденсаторы большой и малой ёмкости отличаются конструкцией диэлектрика. В электролитических конденсаторах, если оксид наносится на 1 электрод или 1 сторону бумаги, пленки, то элемент будет полярным.

Модели неполярных электролитических конденсаторов, в конструкциях которых оксид металла нанесли симметрично на обе поверхности диэлектрика, включают в цепи с переменным током.

У полярных на корпусе присутствует маркировка положительного или отрицательного электрода.

Что такое конденсатор и как он работает?Watch this video on YouTube

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:

  1. https://www.asutpp.ru/kalkulyator-rascheta-posledovatelnogo-soedineniya-kondensatorov.html
  2. https://www.asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-kondensatorov.html

Сферы применения конденсаторов и их виды

Способность накапливать и очень быстро отдавать заряд находит применение там, где требуются редкие, но мощные импульсы тока. Примеры таких устройств — лампы-вспышки и электрические разрядники.

Способность накапливать заряд важна в «сглаживающих» элементах схем. Если напряжение в схеме имеет пульсации, то подключение конденсатора позволяет значительно их уменьшить: в момент роста напряжения ток будет не только поступать к нагрузке, но и заряжать конденсатор. А в момент снижения напряжения нагрузка получит дополнительное электричество из заряженного конденсатора. Особенно широко сглаживание пульсаций применяется в блоках питания: переменное напряжение из сети после выпрямления имеет «чисто пульсирующий» вид, и, чтобы получить постоянное напряжение, нужен конденсатор с относительно большой емкостью — сотни и тысячи микрофарад.

Что такое конденсатор и как он работает?Рис. 1. Электролитические конденсаторы большой емкости.

Конденсаторы емкостей от микрофарада и менее применяются в радиоэлектронных устройствах. Здесь используются их разделительные и резонансные свойства.

Разделительные конденсаторы используются там, где надо отделять переменную и постоянную составляющие сигнала. Резонансные свойства используются в контурах и фильтрах совместно с индуктивными элементами для выделения сигналов определенной частоты. Кроме того, при заряде конденсатора напряжение на нем возрастает не сразу, а значит, конденсаторы могут использоваться в линиях задержки.

Что такое конденсатор и как он работает?Рис. 2. Переменный конденсатор с воздушным диэлектриком.

Наконец, способность конденсатора хранить заряд широко используется для запоминающих устройств в компьютерах.

Такие конденсаторы имеются внутри интегральных микросхем памяти, имеют емкость $\thicksim 5…50×10^{-14}$ Ф (в зависимости от технологии) и очень малые размеры, что позволяет иметь в микросхемах сотни миллионов таких запоминающих ячеек.

Что такое конденсатор и как он работает?Рис. 3. Интегральный конденсатор в микросхеме.

Что мы узнали?

Конденсаторы большой емкости применяются там, где необходимо быстро отдавать заряд: во вспышках, разрядниках, блоках питания. В радиоэлектронных устройствах используются резонансные и разделительные свойства конденсаторов средних и малых емкостей. Интегральные конденсаторы используются в микросхемах памяти компьютеров.

  1. /5

    Вопрос 1 из 5

    Конденсатор является проводником:

    • для постоянного и переменного тока

    • только для постоянного тока

    • только для переменного тока

    • конденсатор не проводит ток

Классификация

Основные параметры конденсаторных изделий определяются типом диэлектрика. От материала зависит стабильность ёмкости, тангенс диэлектрических потерь, пьезоэффект и другие. Исходя из этого, классификацию моделей целесообразно осуществлять именно по виду диэлектрика.

По данному признаку различают следующие типы изделий:

  • вакуумные;
  • с воздушным диэлектриком;
  • радиоэлементы, в которых диэлектриком является жидкость;
  • с твёрдым неорганическим диэлектриком (стекло, слюда, керамика). Характеризуются малым током утечки;
  • модели с бумажным диэлектриком и комбинированные, бумажно-плёночные;
  • масляные конденсаторы постоянного тока;
  • электролитические;
  • категория оксидных конденсаторов, к которым относятся оксидно-полупроводниковые и танталовые конденсаторы;
  • твёрдотельные, у которых вместо жидкого электролита используется органический полимер или полимеризованный полупроводник.

В твёрдотельных моделях срок службы больший, чем у жидко-электролитических и составляет около 50 000 часов. У них меньшее внутренне сопротивление, то есть ЭПС почти не зависит от температуры, они не взрываются.

Классифицируют изделия и по другому важному параметру – изменению ёмкости. По данному признаку различают:

  • постоянные конденсаторы, то есть те, которые имеют постоянную емкость;
  • переменные, у которых можно управлять изменением ёмкости механическим способом либо с помощью приложенного напряжения (варикапы и вариконды), а также путём изменения температуры (термоконденсаторы);
  • класс подстроечных конденсаторов, которые используют для подстройки или выравнивания рабочих ёмкостей при настройке контуров, а также с целью периодической подстройки различных схем.
Популярные статьи  Как подключить розетку для электроплиты, если провода не известны?

Все существующие конденсаторы можно условно разделить на общие и специальные. К изделиям общего назначения относятся самые распространённые низковольтные конденсаторы (см. рис. 6). К ним не предъявляют особых требований.

Что такое конденсатор и как он работает?
Рис. 6. Конденсаторы общего назначения

Все остальные ёмкостные радиоэлементы принадлежат к классу специального назначения:

  • импульсные;
  • пусковые;
  • высоковольтные (см. рис. 7);
  • помехоподавляющие,
  • дозиметрические и др.;

Что такое конденсатор и как он работает?
Рис. 7. Высоковольтные конденсаторы Изображённые на фото устройства могут работать в высоковольтных цепях сравнительно низкой частоты.

Что такое конденсатор?

В классическом понимании конденсатором является радиоэлектронное устройство, предназначенное для накопления энергии электрического поля, обладающее способностью накапливать в себе электрический заряд, с последующей передачей накопленной энергии другим элементам электрической цепи. Устройства очень часто используют в различных электрических схемах.

Конденсаторы способны очень быстро накапливать заряд и так же быстро отдавать всю накопленную энергию. Для их работы характерна цикличность данного процесса. Величина накапливаемого электричества и периоды циклов заряда-разряда определяется характеристиками изделий, которые в свою очередь зависят от типа модели. Параметры этих величин можно определить по маркировке изделий.

Что такое конденсатор и для чего он нужен?

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Что такое конденсатор и как он работает?

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы), а на другой отрицательно заряженные частицы (электроны). Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока. Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

Основными параметрами конденсатора являются:

  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф), на практике часто встречаются мкФ (1мкФ = 0,000001 Ф), нФ (1нФ = 0,000000001 Ф), пФ (1пФ = 0,000000000001 Ф), так как емкость в 1Ф очень велика. Но есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже).
  2. Номинальное напряжение — это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В). При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения — допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее).
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) повышается вязкость электролита и его ESR (удельное электрическое сопротивление), что ведет к уменьшению емкости конденсатора.

Для чего же нужны конденсаторы и с чем их «едят».

  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах), он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т.п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Если вы нашли ошибку или нерабочую ссылку на файл, выделите ее и нажмите Shift + Enter или нажмите здесь , чтобы сообщить нам.

Что такое конденсатор?

Основная функция конденсатора

Функция конденсатора — накопление электростатического заряда на обложках при подключении его к источнику напряжения. После отключения конденсатора от цепи он сохраняет накопленную электроэнергию. Повторное подключение конденсатора к замкнутому контуру без источника питания или с источником напряжения ниже, чем напряжение накопленное в конденсаторе, приведет к высвобождению части или всей энергии.

Электрическая емкость — основной параметр конденсатора

Главный параметр — емкость, то есть способность конденсатора к накоплению заряда. Емкость обозначается буквой „C”, а единицей измерения емкости является F (Фарад):

С = Q / U

1F = 1C / 1V

где,
С – емкость, в фарадах
Q — заряд, накопленный на одной обложке, в кулонах *
U — напряжение между обложками, в вольтах
* Кулон — это величина заряда, прошедшего через проводник при силе тока 1 А за время 1 сек.

Емкость конденсаторов

Свойство конденсатора накапливать электрический заряд характеризуется физической величиной — электроемкостью.

Электроемкость обозначается буквой C и определяется по формуле: C=q ⁄ U, где q — заряд конденсатора, U — напряжение между обкладками конденсатора. Электроемкость конденсатора зависит от площади перекрытия пластин и расстояния между ними, а также от свойств используемого диэлектрика: C ∼ S ⁄ d, где S — площадь каждой обкладки, d — расстояние между обкладками.

За единицу электроемкости в СИ принимается Фарад (Ф). 1 Фарад равен емкости конденсатора, при которой заряд 1 Кулон создает между его обкладками напряжение 1 Вольт: 1 Фарад = 1 Кулон ⁄ 1 Вольт.

Для получения требуемой емкости конденсаторы соединяют в батареи:

Если конденсаторы соединены параллельно, то общая емкость равна сумме емкостей: Cоб = C1 + C2 + C3.
Если конденсаторы соединены последовательно, то общая емкость будет равна: 1 ⁄ Cоб = 1 ⁄ C1 + 1 ⁄ C2 + 1 ⁄ C3.
Добавить комментарий