Защита от ЭМИ на улице
В условиях городской среды люди непрестанно сталкиваются с электрическими сетями, вездесущей сотовой связью, передвигаются на электрическом транспорте – электричках, трамваях и троллейбусах. Дома некоторых расположены вблизи высоковольтных ЛЭП.
Защиту населения от воздействия ЛЭП должно осуществлять государство, создавая границы санитарно-защитных зон, снижая электрическое поле в жилых домах, учреждениях, офисных зданиях, в местах длительного пребывания граждан путем использования экранирующего покрытия. Следует на законодательном уровне вводить правила постройки любых зданий с учетом расположения близлежащих ЛЭП, обеспечение строений заземлением, надлежащей электрификацией, экранированием, в случае необходимости строго запрещая строительство с уклонением от этих норм. В реальности, увы, этого не происходит, ввиду затратности исследований.
Чтобы создать защиту для своего тела, следует применять простые методы охраны от электромагнитных излучений:
- не стоять ближе 1 м к человеку, разговаривающему по телефону;
- как можно меньше пользоваться электротранспортом;
- в случае близкого расположения ЛЭП и/или неизбежного частого использования электричек и другого подобного вида передвижения, можно приобрести или изготовить одежду из экранирующей ткани.
Это интересно: Оказание первой помощи при поражении электрическим током: разбираем развернуто
Как вести себя при угрозе взрыва
Для жителей крупных городов вероятность спастись от радиации, находясь вне своей квартиры, достаточно мала. Особенно если на момент взрыва вы находитесь в метро или в большом торговом центре. Ведь именно эти объекты выбирают в качестве мишеней террористы. Но предположим, что во время взрыва вам посчастливилось находиться дома. Рассмотрим, что нужно сделать, чтобы выжить в момент катастрофы и после нее: Расположитесь в комнате без окон. Если ваша квартира попадет под удар взрывной волной, стекло не уцелеет, и через него проникнет первичное радиоизлучение. На крайний случай заклейте окна скотчем и пластырем, возможно, это поможет удержать стекло в раме. Дополнительно необходимо заклеить все щели и закрыть вентиляцию, чтобы избежать проникновения зараженных частиц вместе с воздухом и пылью. В помещении, где вы будете находиться, разместите предметы первой необходимости (одежду, обувь, воду и еду). Все это должно находиться в герметично закрытых емкостях
Учтите, что запасов питьевой воды и съестного должно хватить на длительное время, возможно, на 2-3 недели.
Обратите внимание на одежду – кожа должна быть максимально закрыта. Плотно застегните все пуговицы, манжеты. Края рубашки и штанов обмотайте скотчем
В домашних условиях на руки и ноги рекомендуется надеть целлофановые пакеты и также прочно закрепить, чтобы не осталось ни малейшей щели. На лицо наденьте маску, респиратор. В идеале в данной ситуации использовать противогазы, но вряд ли среднестатистическая семья держит под рукой такое обмундирование. Поэтому ограничимся подручными средствами, даже если это будет просто кусок хлопчатобумажной ткани
Края рубашки и штанов обмотайте скотчем. В домашних условиях на руки и ноги рекомендуется надеть целлофановые пакеты и также прочно закрепить, чтобы не осталось ни малейшей щели. На лицо наденьте маску, респиратор. В идеале в данной ситуации использовать противогазы, но вряд ли среднестатистическая семья держит под рукой такое обмундирование. Поэтому ограничимся подручными средствами, даже если это будет просто кусок хлопчатобумажной ткани.
Если момент взрыва вам удалось пережить, дальше вам предстоит бороться с его последствиями, оберегая себя и свою семью от вторичной радиации.
Что такое электромагнитное излучение?
Классификация электромагнитного излучения базируется на спектре частот, длине волн и поляризации. К поляризованному ЭМИ относится то, где колебания волн осуществляются в одной плоскости. Длина волн может колебаться от 5 пикометров (пм) до десятков километров.
Электрические заряды, находящиеся в движении с ускорением, формируют излучение. Распространение волн происходит как в плотной среде, так и в вакуумной, но скорость распространения ЭМИ в веществе ниже.
- линии электропередач;
- электротранспорт;
- лифты;
- мобильные, телевизионные и радиовышки;
- трансформаторы.
Низкий уровень излучений характерен для компьютерных дисплеев, бытовых приборов, систем снабжения электроэнергией. Жесткие ионизирующие волны излучает медицинская диагностическая техника (рентген, компьютерная томография). Излучение обладает свойствами волн и частиц, которые хорошо демонстрируют явление фотоэффекта, где энергия каждого электрона определяется частотой, а не интенсивностью падающего света.
Электромагнитное поле производится движущимися зарядами и токами. Теория электромагнитного поля, созданная Максвеллом, поясняет электромагнитную индукцию: изменение магнитного поля в одной точке пространства влечет образование электрического поля и наоборот. Эти порождающие друг друга поля сливаются в единое электромагнитное поле (ЭМП).
Наличие в поле замкнутого проводника приводит к появлению индукционного тока. При максимальной амплитуде тока и направленном вверх векторе скорости положительных зарядов во всех точках антенны заряд, приходящийся на единицу ее длины, равен нулю.
Электромагнитный спектр
Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.
Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон — это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой).
Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.
Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.
Мифы об электромагнитном загрязнении
Влияние ЭМИ на человека изучается с середины прошлого века. Было введено понятие «радиоволновая болезнь». Эти исследования продолжаются в наши дни. Влияние ЭМИ на организм зависит от многих факторов. Это: технические характеристика устройств, время воздействия, особенности отдельного организма.
Существует такое мнение, что крупные и качественные приборы известных производителей безопасны для человека с точки зрения излучения. Это обоснование верно, если речь идет о новой технике. Какой бы ни был прибор, если он ремонтировался, на нем есть дефекты, интенсивность излучения и его вред могут быть приравнены к АХОВ (аварийно химически опасным веществам).
Защита от излучения
На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.
Учитывая исходящую от ЭМИ опасность, советуем придерживаться трех простых рекомендаций.
Рекомендация первая.
Необходимо находиться как можно дальше от источников ЭМИ. Безопасное расстояние зависит от их мощности. Приведем несколько примеров:
- чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
- для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
- электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
- что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.
Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.
Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.
Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.
Точно определить интенсивность излучения можно при помощи специального прибора — флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.
Флюксметр — прибор для измерения степени излучения электромагнитного поля
Вторая рекомендация.
Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.
Третья рекомендация.
Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.
11.2. Нормирование воздействия электромагнитного излучения радиочастот
Оценка воздействия ЭМИ РЧ на человека согласно СаНПиН 2.2.4/2.1.8.055-96 осуществляется по следующим параметрам:
- По энергетической экспозиции, которая определяется интенсивностью ЭМИ РЧ и временем его воздействия на человека. Оценка по энергетической экспозиции применяется для лиц, работа или облучение которых связаны с необходимостью пребывания в зонах влияния источников ЭМИ РЧ (кроме лиц, не достигших 18 лет, и женщин в состоянии беременности) при условии прохождения этими лицами в установленном порядке предварительных и периодических медицинских осмотров по данному фактору и получения положительного заключения по результатам медицинского осмотра.
- По значениям интенсивности ЭМИ РЧ; такая оценка применяется для лиц, работа или обучение которых не связаны с необходимостью пребывания в зонах влияния источников ЭМИ РЧ, для лиц не проходящих предварительных при поступлении на работу и периодических медицинских осмотров по данному фактору или при наличии отрицательного заключения по результатам медицинского осмотра; для работающих или учащихся лиц, не достигших 18 лет, для женщин в состоянии беременности; для лиц, находящихся в жилых, общественных и служебных зданиях и помещениях, подвергающихся воздействию внешнего ЭМИ РЧ (кроме зданий и помещений передающих радиотехнических объектов); для лиц, находящихся на территории жилой застройки и в местах массового отдыха.
В диапазоне частот 30 кГц …300МГц интенсивность ЭМИ РЧ оценивается значениями напряженности электрического поля (Е,В/м) и напряженности магнитного поля (Н, А/м).
В диапазоне частот 300МГц …300ГГц интенсивность ЭМИ РЧ оценивается значениями плотности потока энергии (ППЭ, Вт/м2, мкВт/см2).
Энергетическая экспозиция (ЭЭ) ЭМИ РЧ в диапазоне частот 30кГц…300МГц определяется как произведение квадрата напряженности электрического или магнитного поля на время воздействия на человека.
Энергетическая экспозиция, создаваемая электрическим полем, равна ЭЭе = Е2Т[ (В/м)2 ч] . (2.16).
Энергетическая экспозиция, создаваемая электрическим полем, равна ЭЭн = Н2Т[ (а/м)2 ч] . (2.17).
В случае импульсно-модулированных колебаний оценка проводится по средней за период следования импульса мощности источника ЭМИ РЧ и, соответственно, средней интенсивности ЭМИ РЧ.
Энергетическая экспозиция за рабочий день (рабочую смену) не должна превышать значений, указанных в таблице 2.4.
Таблица 2.4. Предельно допустимые значения энергетической экспозиции
предельно допустимая энергетическая экспозиция |
|||
диапазон частот |
по электрической составляющей (В/м)2 ч |
по магнитной составляющей (А/м)2 ч |
по плотности потока энергии (мкВт/см2) ч |
30кГц…3МГц |
20000 |
200 |
— |
3…30 МГц |
7000 |
не разработаны |
— |
30…50МГц |
800 |
0,72 |
— |
50…300МГц |
800 |
не разработаны |
— |
300МГц…300ГГц |
— |
— |
200 |
Примечание. В настоящих Санитарных нормах и правилах во всех случаях при указании диапазонов частот каждый диапазон исключает нижний и включает верхний предел частоты.
Предельно допустимые значения интенсивности ЭМИ РЧ (Епду, Нпду, ППЭпду) в зависимости от времени воздействия в течение рабочего дня (рабочей смены) и допустимое время воздействия в зависимости от интенсивности ЭМИ РЧ определяется по формулам:
Епду = (ЭЭепд / Т)1/2, Т = ЭЭ / Е2; (2.18)
Нпду = (ЭЭнпд / Т)1/2, Т = ЭЭ / Н2; (2.19)
ППЭпду = Ээппэпд / Т, Т = Ээппэпд / ППЭ. (2.20)
Предельно допустимая интенсивность воздействия от антенн, работающих в режиме кругового обзора, или сканирования с частотой не более 1Гц и скважностью не менее 20 определяется по формуле:
ППЭпду = К (ЭЭппэ /Т), (2.21),
где К — коэффициент ослабления биологической активности прерывистых воздействий, равный 10.
Независимо от продолжительности воздействия интенсивность не должна превышать максимальных значений (например, 1000 мкВт/ см2 для диапазона частот 300 МГц…300ГГЦ).
Для случаев локального облучения кистей рук при работе с микрополосковыми СВЧ — устройствами предельно допустимые уровни воздействия определяются по формуле:
ППЭпду = К1 (ЭЭппэ /Т), (2.22),
где К1 — клэффициент ослабления биологической эффективности, равный 12,5. При этом плотность потока энергии на кистях рук не должна превышать 5000 мкВт/см2.
Предельно допустимые уровни ЭМИ РЧ должны определяться, исходя из предположения, что воздействие имеет место в течение всего рабочего дня (рабочей смены).
Сокращение продолжительности воздействия, должно быть подтверждено технологическими распорядительными документами и (или) результатами хронометража.
Виды электромагнитного излучения
ЭМИ разделено на виды по характеристикам длины и частоты.
Длина волн колеблется в таких диапазонах:
- Радиоволны (от 0,1 мм до 10 км и более) делятся на короткие, ультракороткие, средние, длинные и сверхдлинные. Ультракороткие радиоволны относятся к сверхвысокочастотным (СВЧ) волнам.
- Инфракрасные лучи (от 1 мм до 780 нм).
- Ультрафиолетовые лучи (от 380 мм до 10 нм).
- Видимый свет (от 780 мм до 380 нм).
- Рентген-излучение (от 10 нм до 5 пм).
- Гамма-лучи (до 5 пм).
Частота волн варьируется от 30 кГц (для радиоволн) до 6×10¹9 Гц и более (для гамма-лучей).
Волны разной длины образуются разными способами:
- рентгеновские появляются тогда, когда быстро движущиеся электроны переходят в состояние с меньшей энергией вследствие торможения;
- ультрафиолетовое излучается вследствие движения ускоренных электронов;
- инфракрасное излучение испускается раскаленными предметами;
- радиоволны образуются из высокочастотных токов, движущихся по антеннам;
- ионизирующее гамма-излучение испускается в процессе ядерных реакций.
Вышеперечисленные виды волн поглощаются веществами неодинаково: рентгеновские и гамма-волны проникают сквозь ткани организма и почти не поглощаются, инфракрасные лучи проходят сквозь ряд непрозрачных объектов, при поглощении происходит нагрев вещества.
Свойства электромагнитных волн
Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.
Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.
Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.
Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.
В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:
Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).
Электромагнитная волна переносит энергию.
Диапазон электромагнитных волн
Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.
Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.
Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.
К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.
Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.
Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.
Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.
Коснулось ли вас одно из заболеваний, связанных с ЭМП?
Поскольку биологический ущерб от ЭМП срабатывает при активации VGCC, само собой разумеется, что ткани с его наибольшей плотностью подвергаются большему риску. Ткани тела с высокой концентрацией VGCC (а значит наиболее восприимчивые к повреждениям от ЭМП) включают:
- Мозг
- Яички (у мужчин)
- Нервную систему
- Синусовый узел сердца, что приводит к аритмии
- Сетчатку
Когда VGCC активируются в мозге, они выделяют нейромедиаторы и нейроэндокринные гормоны. Повышенные активности VGCC в некоторых частях мозга производит разнообразные психоневрологические эффекты. Наиболее распространенные последствия хронического воздействия ЭМП на ваш мозг:
- Болезнь Альцгеймера
- Тревожность
- Аутизм: один из моих давних наставников, д-р Дитрих Клингхардт, связал аутизм у детей с чрезмерным воздействием ЭМП во время беременности
- Депрессия
Наиболее распространенные проблемы с сердцем, которые были связаны с воздействием ЭМП:
- Фибрилляция / трепетание предсердий
- Брадикардия (замедленное сердцебиение)
- Нарушения сердечного ритма (в связи с внезапной сердечной смертью)
- Учащенное сердцебиение
- Тахикардия
Источники излучения
Электромагнитные поля есть везде, для человека они не видимы, но наукой выявлены.
Природные источники
ЭМП, как явление, связано с магнитным полем Земли и присутствием электрических разрядов в атмосфере.
К источникам естественного происхождения электромагнитного загрязнения относят:
- электричество, присутствующее в атмосфере;
- реликтовое излучение Солнца;
- магнитное поле Земли.
Классификация антропогенных источников
К антропогенным типам излучения относят источники, созданные в результате прогресса, называемые техногенными ЭМП. Относительно влияния электромагнитного воздействия на здоровье человека ЭМ излучение классифицируются по частоте волн и близости расположения.
По частоте волн
К созданным прогрессом относят: рентгеновские лучи, напряжение в розетках, радиоволны антенн мобильной связи, телевидения, микроволны СВЧ-печей. Волны вырабатываются генераторами: высокочастотными, ультравысокочастотными и сверхвысокочастотными.
Различие между природными и искусственными ЭМП состоит в частоте и длине волн. Они по-разному сказываются на нашем состоянии и экологии в целом.
По расположению источника
Воздействие ЭМ излучения на организм зависит от расположения источника. Он может находится:
- внутри помещения (внутреннее), это: СВЧ-печь, офисная, домашняя техника;
- на улице (уличное): ЛЭП, трансформаторные подстанции, Ж/Д транспорт, метро и др. источники;
- быть индивидуальным, мобильные телефоны и часы, кардиостимуляторы.
Электромагнитные излучения: источники и причины
Почему микроволновые печи, сотовые телефоны, Wi-Fi используют строго определенные участки спектра? Волны затухают в тумане. Платим, чтобы послания быстро поглощались средой, водой, организмом, содержащим 60 – 65% воды.
Пока держим рукой трубку телефона, наберемся электромагнитной энергии. Принцип действия микроволновой печи. Решили провести эксперимент: нашли в магазине бесконтактную отвертку-индикатор со световой, звуковой сигнализацией, исследовали домашнюю печь СВЧ. Проделали следующее:
Типичный мастер исследования
- Магнетрон выключается на малую мощность, завышенные режимы избегали использовать. Излучение было минимальным, меньше модель СВЧ-печи не выставляет.
- В первой части опыта микроволновка подключена к розетке, снабжена защитным заземлением, оформленным по европейским стандартам. Видно, сверху спускается кабель-канал, допускается стандартами.
- Во второй части опыта использован удлинитель, лишенный лепестков заземления. Получилось нарушение технологии европейских стандартов. Смотрите результат, вызванный электромагнитным излучением.
Напоминаем, бесконтактная отвертка-индикатор внутри корпуса содержит активные усилительные элементы, работающие от простенькой батарейки. Принимает слабые сигналы внешних источников. Принцип действия напоминает советскую отвёртку-индикатор. Фаза находится прикосновением к токонесущей части. Однако активная усилительная часть вводит немалые коррективы:
- Благодаря высокой чувствительности, щуп бесконтактной отвертки-индикатора работает, подражая приемной антенне.
- Чутко реагирует на диапазон 50 Гц в силу предназначения. При контактном способе регистрируется наличие фазы всегда, на дистанции засекается только электромагнитное излучение, образуемое движением тока. Провод без нагрузки сигнала не даст.
- Отвертка-индикатор демонстрирует 2-3 диапазона чувствительности (см. фото). В нашем случае использован максимальный для пущей наглядности.
Кнопка установки чувствительности
Результаты опыта потрясающие, действие электромагнитного излучения представлено снимками:
-
Первое фото показывает: защита против электромагнитного излучения реализуется путем подключения прибора в оборудованную по правилам европейской розетки. Корпус, будучи заземлен, образует экран. Иначе половина излучения пойдет наружу, вторая вредит внутри печи СВЧ, вызывая паразитные эффекты.
Розетка с заземлением
-
Второе фото показывает: в случае верного подключения отвертка-индикатор на высоком уровне чувствительности молчит, будучи приближена вплотную к корпусу. Означает, уровень электромагнитного излучения пренебрежимо мал, воздействие на организм не отмечается.
Отсутствие электромагнитного поля
- Следующее фото демонстрирует старенький удлинитель, где отсутствует лепесток заземления. Правильно поставленная европейская розетка теперь бездействует. Результат поразителен! Прибор дает столь сильные электромагнитные поля, чувствуются на удалении 30 см (минимум) от микроволновой печи. Показали на снимке световую индикацию зеленого огонька (не значит «безопасно»), от трещотки-зуммера отвертки-индикатора можно оглохнуть.
Подключение без заземления
Наличие электромагнитного поля
Делайте выводы. Влияние на человека излучения 2,4 ГГц давно доказано (оспорено судом, права исследователя восстановлены следующей инстанцией), длина волны печи СВЧ та самая, энергия столь велика (без заземления), что вызывает срабатывание индикатора на значительном расстоянии. Потрудитесь прокладывать электрику, как предписывают стандарты. Розетки следует оборудовать лепестками заземления, чтобы корпус техники подавлял воздействие электромагнитных излучений, служа экраном.
Это интересно: Сгорела бытовая техника из-за отключенного нулевого провода
Прайминг-эффект (priming)
Наверное, все когда-нибудь играли в игру, в которой один человек говорит слово, а другой тут же отвечает первую ассоциацию, что приходит ему на ум? На подобном принципе основываются такие игры, как, например, Элиас (Alias). Как правило, безошибочно работает использование в игре таких устойчивых ассоциаций, как: «тульский …» — пряник, «последний …» — звонок.
Это что-то вроде программирования. Вы получаете один сигнал, и это влияет на то, как вы реагируете на последующий. Журнал Psychology Today приводит в пример исследование двух групп людей, читающих последовательно слова «желтый», а затем — либо «небо», либо «банан». Поскольку люди имеют смысловую связь между фруктом и его цветом, группа «желтый-банан» распознает слово «банан» быстрее, чем группа «желтое-небо» распознает «небо».
Как это применяет маркетинг? Например, используя этот метод для выбора фона Интернет-сайта, можно помочь посетителям сайта запомнить ключевую информацию о бренде — и, возможно, даже повлиять на их покупательское поведение.
Это было протестировано ранее. В исследовании, проведенном Наоми Мандель и Эриком Джонсоном, ученые изменяли фон и дизайн веб-сайта, чтобы увидеть, как это могло бы повлиять на выбор продукта потребителями. Участникам было предложено выбрать один из двух продуктов одной категории (например, между Тойотой и Лексусом). Исследователи обнаружили:
Как проверить уровень электромагнитного излучения в домашних условиях
Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.
Watch this video on YouTube
Для самостоятельного определения степени излучения понадобятся отвертка с индикатором и радиоприемник.
- Выдвиньте антенну из приемника;
- Прикрутите к ней проволочную петлю диаметром 40 см;
- Настройте радио на пустую частоту;
- Обойдите помещение. Прислушивайтесь к звукам приемника;
- Место, где слышатся отчетливые звуки, и является источником излучения;
- Поднесите индикаторную отвертку со светодиодом. Индикатор станет красным, а интенсивность цвета скажет о силе излучения.
Увидеть значение в цифрах позволит ручной прибор. Он работает на разных частотах и улавливает напряжение электромагнитного поля. Прибор настраивается на нужный режим частот, выбирая единицы измерения: вольт/метр или микроватт/см2, отслеживает выбранную частоту и выводит результат на компьютер.
Также хорошим прибором является АТТ-2592. Устройство портативное, имеет дисплей с подсветкой. Измерение выполняет изотропным методом, автоматически выключается через 15 минут.
Что такое шаговое напряжение и как покинуть опасную зону
Что такое электромагнитное реле, их виды и принцип работы
Что такое светодиод, его принцип работы, виды и основные характеристики
Что такое цветовая температура светодиодных ламп?
Клетка Фарадея своими руками
Как выбрать потолочный инфракрасный обогреватель?
Пара полезных советов
Чтобы меньше думать о том, как защитить себя от электромагнитной энергии, необходимо прислушаться к нескольким полезным советам:
- При покупке недвижимости обязательно узнать о местах прокладки высоковольтных линий передач. Не стоит покупать земельный участок там, где проходят воздушные ЛЭП. У многих хозяев таких домов через несколько лет развиваются сильные головные боли, ухудшается самочувствие.
- Следует сократить своё пребывание в электрифицированном транспорте. Это не только относится к электрокарам, но также к простому трамваю и троллейбусу. Если расстояние небольшое, то его лучше пройти пешком – нет вредного электромагнитного излучения под ногами и для здоровья полезно.
В чем заключается вредное воздействие статического электричества в промышленности?
Заряды статического электричества могут возникнуть при соприкосновении или трении твердых материалов, при размельчении или пересыпании однородных и разнородных непроводящих материалов, при разбрызгивании диэлектрических жидкостей, при транспортировке сыпучих веществ и жидкостей по трубопроводам и др.
Вредное воздействие статического электричества проявляется в возможности пожаров и взрывов от электростатических зарядов, технологических помех, нарушающих нормальный ход того или иного технологического процесса, физиологического воздействия на организм человека.
Человек может подвергаться длительному процессу электризации при контактировании с различного рода предметами, выполненными из материалов с высокими диэлектрическими свойствами. К числу подобных источников электризации относятся: полы, ковры, ковровые дорожки из синтетических и других электронепроводящих материалов.
Действие статического электричества на человека смертельной опасности не представляет, поскольку сила тока составляет небольшую величину. Искровый разряд статического электричества человек ощущает, как толчок или судорогу. При внезапном уколе может возникнуть испуг, и вследствие рефлекторных движений человек может сделать непроизвольно движения, приводящие к падению с высоты, попаданию в неогражденные части машин и др. Длительное воздействие статического электричества неблагоприятно отражается на состоянии здоровья.
Вызываемые статическим электричеством неприятные ощущения могут явиться этиологическим фактором неврастенического синдрома, головной боли, плохого сна, раздражительности, неприятных ощущений в области сердца и т. д.
Технические средства для снижения электромагнитного загрязнения
Для снижения негативного влияния электромагнитных полей можно использовать различные спецсредства, например, экранирующие краски либо специальные шторы
. Их применение может потребовать значительных затрат и не всегда оправдано. В большинстве случаев необходимость в них возникает при расположении жилья в области повышенного загрязнения (рядом с высоковольтной ЛЭП, радарами, вышками сотовой связи).
К наиболее эффективным решениям можно отнести:
- Укладка металлической сетки на стены и потолок квартиры . Осуществляется в процессе ремонта, после фиксации к поверхности. Такую сетку обычно покрывают декоративной штукатуркой;
- Использование поглощающих красок. Многие производители предлагают краски, содержащие частицы металлов и других экранирующих материалов. Такое покрытие способно поглотить большую часть вредного излучения;
- Использование штор из экранирующей ткани . Окна – основной источник поступления ЭМИ в помещение. Прикрытие их специальными гардинами, в ткани которых вплетено небольшое количество металлических волокон – хороший метод защиты.
Важно понимать, что использование экранирующих сеток, красок может заметно снизить уровень приема мобильного телефона внутри квартиры. В результате сильно снизиться качество связи, либо аппарат вообще потеряет возможность соединятся с вышкой оператора. Причем при снижении уровня сигнала современные смартфоны заметно наращивают мощность излучения, поэтому эффект от таких радикальных решений может быть отрицательным
Причем при снижении уровня сигнала современные смартфоны заметно наращивают мощность излучения, поэтому эффект от таких радикальных решений может быть отрицательным.
Прежде чем использовать эти дорогостоящие методы защиты нужно проконсультироваться со специалистами и провести профессиональное измерение фона в помещении.
Только после этого нужно принимать решение о методах борьбы с излишним фоновым излучением. В большинстве случаев будет достаточно простой перестановки мебели и уменьшения количества работающих одновременно электроприборов.
Взаимность
В книге доктора Роберта Чалдини «Влияние: Психология убеждения» (Influence: The Psychology of Persuasion) понятие «взаимности» представлено предельно простой формулой — если кто-то делает что-то для вас, вы, естественно, будете хотеть сделать что-то в ответ для него.
Если вы когда-либо получали жевательную резинку вместе с вашим счетом в кафе или ресторане, вы были жертвой взаимности. По словам Чалдини, когда официанты приносят посетителю чек без жевательной резинки, то это непременно отразится на размере чаевых как отражение восприятия качества обслуживания. С одной жевательной резинкой чаевые увеличиваются на 3,3%. Две мятных жвачки? Чаевые могут увеличиться до 20%!
В маркетинге есть много способов, чтобы воспользоваться взаимностью. При этом продавец вовсе не должен разориться, предоставляя вам бесплатно ценные вещи. Бонусом может стать все что угодно – от брендированной футболки до эксклюзивной книги, бесплатные обои для рабочего стола, или сборник советов по какому-то вопросу. Даже что-то такое простое, как рукописная открытка или записка, может стать ключом для установления взаимности. Продавцу достаточно дать бесплатную и, скорее всего, ненужную вам вещь, прежде чем просить что-то более ощутимое взамен.