Стоимость
Средняя цена балластного устройства вполне доступна даже для рядового потребителя, но варьируется в зависимости от типа, а также ценовой политики производителя:
- балластное устройство для люминесцентной лампы с крепежами и патронами от производителя Feron – 220 рублей;
- аппарат пускорегулирующий электронный 2х18W – 240 рублей;
- электронный пускорегулирующий аппарат для люминесцентной лампы от производителя Foton – 320 рублей;
- электронный пускорегулирующий аппарат для люминесцентной лампы от производителя OSRAM – 410 рублей;
- электронный пускорегулирующий аппарат для люминесцентной лампы от производителя Tridonic – 450 рублей;
- балластное устройство для люминесцентной лампы VS ELXc – 530 рублей.
Стоимость качественного балласта-переходника также вполне доступна, и составляет порядка 150-170 рублей.
Классическое подключение через электромагнитный балласт
Особенности схемы
В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.
Дроссель для люминесцентных лампСтартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W
Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.
Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.
Подключение лампы с электромагнитным балластом
Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:
- после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
- через стартерные контакты обеспечивается поступление электричества;
- ток устремляется по вольфрамовым нитям нагрева электродов;
- электроды и стартер нагреваются;
- происходит размыкание контактов стартера;
- аккумулированная дросселем энергия высвобождается;
- величина напряжения на электродах меняется;
- люминесцентная лампа дает свет.
В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.
Схема подключения одной люминесцентной лампы через стартер
Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:
- надежность, проверенную временем;
- простоту;
- доступную стоимость.
- Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
- внушительный вес осветительного прибора;
- продолжительное время включения светильника (в среднем до 3 секунд);
- низкую эффективность системы при эксплуатации на холоде;
- сравнительно высокое потребление энергии;
- шумную работу дросселя;
- мерцание, негативно воздействующее на зрение.
Порядок подключения
Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.
Главные задачи стартера сводятся к:
- обеспечению включения лампы;
- пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.
Дроссель используется для выполнения таких задач:
- ограничения величины тока в момент замыкания электродов;
- генерации напряжения, достаточного для пробоя газов;
- поддержания горения разряда на постоянном стабильном уровне.
В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.
Подключаем в соответствии с представленной схемой. Для этого делаем следующее.
Первый шаг
Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.
Третий шаг
К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.
Подключение ламп, переделка светильников
В качестве «пациента» для трансплантации был выбран накладной светильник типа ЛПО 2х36 с ЭмПРА.
Провели измерения тока потребления при использовании стандартных люминесцентных ламп: 0,680 А при двух включенных лампах и 0,342 А – при одной, а также измерения уровня освещенности на рабочем месте.
Эксперимент с подключением светодиодных ламп для ЭмПРА
Далее мы демонтировали люминесцентные лампы и стартеры и установили на их место светодиодные. Провели измерения тока потребления – 0,154 А (при двух подключенных лампах), а также замеры освещенности как без отражателя, так и при его наличии.
Эксперимент с подключением светодиодных ламп прямого включения
Разобрав светильник мы переделали схему включения, исключив ЭмПРА и подав 220 В непосредственно на лампы, собрали светильник и произвели измерения тока потребления – 0,139 А, а также уровня освещенности на рабочей поверхности.
Виды
Сегодня на рынке широко представлены такие виды балластных устройств, как:
- электромагнитные;
- электронные;
- балласты для компактных ламп.
Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.
Электромагнитные
Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.
Мнение эксперта
Виктор Гольштейн
Эксперт по медицинскому оборудованию. Начинающий блогер.
Задать вопрос эксперту
Особенность: сокращение максимального сопротивления дросселя. При остывшем стартере биметаллические электроды размыкаются. После размычки люминесцентной цепи, в индукционную катушку поступает импульс высокого напряжения. В процессе происходит розжиг лампы.
Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.
При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.
Плюсы | Минусы |
---|---|
Высококлассный уровень надежности, доказанный практикой и временем. | Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы. |
Простота конструкции. | Повышенный расход электроэнергии. |
Удобство эксплуатации модуля. | Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения. |
Доступная цена для потребителей. | Слышен гул работы дросселя. |
Количество фирм производителей. | Значительный вес конструкции и громоздкость. |
Электронные
Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.
Мнение эксперта
Виктор Гольштейн
Эксперт по медицинскому оборудованию. Начинающий блогер.
Задать вопрос эксперту
ВАЖНО: Балластник представляет собой легкое устройство, которое еще называют электронным пускорегулирующим аппаратом (ЭПРА). Существуют следующие преимущества применения в качестве детали к люминесцентным лампам блоков ЭПРА:
Существуют следующие преимущества применения в качестве детали к люминесцентным лампам блоков ЭПРА:
- малый вес и компактность;
- плавное быстрое включение;
- в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
- снижены потери на нагревание;
- коэффициенты мощности в электронных схемах достигают 0,95;
- продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
Достоинства | Недостатки |
---|---|
Автоматическая настройка балласта под различные виды ламп. | Более высокая стоимость, по сравнению с электромагнитными моделями. |
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство. | |
Экономия потребления электроэнергии до 30%. | |
Исключен нагрев электронного модуля. | |
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения. | |
Увеличение срока службы люминесцентных ламп. | |
Дополнительная защита гарантирует увеличение степени пожаробезопасности. | |
Снижение рисков в процессе эксплуатации. | |
Ровная подача светопотока исключает быструю утомляемость. | |
Отсутствие негативных функций в условиях пониженных температур. | |
Компактность и легкость конструкции. |
Для компактных люминесцентных ламп
Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.
ЭПРА для компактных ЛДС
Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.
На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.
Лампа OSRAM с цоколем E27
Маркировка
Маркировочное обозначение люминесцентных ламп указано на коробке и содержит данные о фирме, мощности, конструкции цоколя, периоде работы, оттенке свечения и т.д.
Согласно расшифровке индекса первая буква маркировки приборов люминесцентного типа — Л. Последующие буквы указывают на цвет оттенка излучения прибора (дневной, белый, холодный тон белого, ультрафиолетовое излучение и т.д.). Кодовое значение будет включать символы Д, Б, УФ и т.д.
Особенности конструктивного исполнения на маркировках обозначаются соответствующими буквами:
- u-образные люминесцентные лампы (У);
- изделия кольцевой формы (К);
- устройства рефлекторного типа (Р);
- лампы быстрого запуска (Б).
В устройствах люминесцентного вида на маркировке отображаются и показатели свечения, единицей измерения служит Кельвин (К). Показатель температуры 2700 К по оттенку соответствует излучению лампы накаливания. маркировка 6500 К обозначает холодный белоснежный тон.
Мощность приборов маркируется цифрой и единицей измерения — Вт. Стандартные показатели представлены устройствами от 18 до 80 Вт.
На этикетке также представлено обозначение ламп в соответствии с такими характеристиками, как длина, диаметр и форма колбы.
Диаметр колбы на лампе фиксируется буквой «Т» с кодовым обозначением. Прибор, обозначенный кодом Т8, имеет диаметр 26 мм, Т12 — 38 мм и т.д.
Маркировки приборов по типу цоколя содержат буквы Е, G и цифровой код. Обозначение для миниатюрной формы резьбового цоколя — Е14. Средний резьбовой цоколь имеет код Е27. Цоколь втычного типа для декоративных конструкций и люстр маркируется символом G9. Приборы u-образные обозначаются символом G23, двойные u-образные приборы — G24 и т.д.
Показатели цветовой температуры приборов варьируются в зависимости от модели в пределах от 2000 до 6500 К. КПД светильника составляет 45-75%.
Схемы подключения люминесцентных ламп при помощи ЭМПРА
ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.
Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов
Схема подключения люминесцентной лампы ЭМПРА
Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.
Схема индуктивная реализация
- Напряжение питания 220 Вольт;
- Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
- Стартер подключается параллельно к выводам 2 и 3 лампы;
- Вывод 4 лампы подключается ко второму проводу питания;
- В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.
Схема индуктивно-ёмкостная реализация
Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.
Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)
Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).
В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.
Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт
Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.
Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт. Важно замечание
Современные ЭмПРА выпускаются в едином корпусе
Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов
Схема подключения ламп указывается на корпусе
Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.
Основные разновидности
Сегодня существует два типа балласта – электромагнитный и электронный. Они отличаются принципом работы, поэтому стоит познакомиться с каждым из них.
Электромагнитный балласт
Этот вид реализации предполагает последовательное подключение дросселя к лампе. Также для работы электромагнитного ПРА требуется стартер, с помощью которого регулируется процесс зажигания светильника. Эта деталь представляет собой газоразрядную лампу, внутри колбы которой находятся биметаллические электроды.
Работает устройство следующим образом:
- Когда на стартер поступает напряжение, биметаллические электроды замыкаются от нагрева. Это приводит к увеличению силы тока, так как ограничивать его может лишь внутреннее сопротивление обмоток дросселя.
- С ростом показателя электротока начинают разогреваться электроды люминесцентной лампы.
- При остывании стартера размыкаются биметаллические электроды.
- В момент разрыва цепи стартером в катушке дросселя возникает импульс высокого напряжения, что и приводит к зажиганию осветительного прибора.
Когда люминесцентное устройство переходит в штатный режим работы, напряжение на нем и стартере оказывается на 50% меньше сетевого, а этого недостаточно для срабатывания второго элемента. В результате стартер переходит в отключенное состояние и перестает влиять на работу осветительного прибора.
Электромагнитный балласт отличается низкой стоимостью и простой конструкцией. Длительное время эти устройства активно использовались при изготовлении светильников, однако они имеют ряд недостатков:
- Для перехода люминесцентного устройства в рабочий режим требуется около 3 секунд.
- Осветительные приборы с электромагнитным балластом во время работы мерцают, что негативно влияет на органы зрения.
- Расход энергии у этих устройств значительно выше по сравнению с электронным балластом.
- Дроссель шумит во время работы.
Электронная реализация
Электронные устройства представляют собой преобразователи напряжения, с помощью которых обеспечивается питание люминесцентных ламп. Хотя создано много вариантов электронного балласта, в большинстве случаев используется единая блок-схема. При этом производители могут вносить в нее определенные изменения, например, добавить схему управления яркостью осветительного прибора.
Перевод люминесцентного светильника лампы в штатный режим работы с помощью электронного ПРА чаще всего осуществляется одним из двух способов:
- До момента подачи на катоды лампы зажигающего напряжения они предварительно нагреваются. Это позволяет избавиться от мерцания, а также увеличить КПД осветительного прибора.
- В конструкцию светильника установлен колебательный контур, который входит в резонанс до того, как в колбе лампы появится разряд.
Схема пускорегулирующего аппарата для ламп 36w.
Как работает лампа дневного света
Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.
После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.
Из-за нагрева форма электрода меняется и происходит его замыкание.
В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.
У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.
От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.
Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.
Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:
подача 220В из розетки и замыкание контактов стартера
разогрев спиралей электродов
размыкание контактов стартера
подача высоковольтного импульса от дросселя
образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы
Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:
сама лампочка
стартер
дроссель
При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.
Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?
Разновидности пускорегулирующих устройств
В настоящее время в лампах дневного света используются электромагнитные пускорегулирую-щие устройства – ЭмПРА и более современные – электронные (ЭПРА). Каждый из них выполняет одну и ту же функцию и отличаются лишь конструкцией. Поэтому действие приборов происходит по-разному.
Схема ЭмПРА состоит из дросселя, поддерживающего лампу в рабочем режиме, стартера, производящего пуск и конденсатора, снижающего реактивные потери. Основные детали и дополнительные компоненты соединяются в общий блок, представляющий собой довольно громоздкую конструкцию, оказывающую заметное влияние на массу светильника в целом.
Электромагнитное пускорегулирующее устройство подключается очень просто. Каждая люминесцентная лампа оборудована с торцов четырьмя электродами. Первая пара имеет контакты 1 и 2, а вторая пара – 3 и 4. Подключение стартера выполняется к контактам 1 и 3, обмотка дросселя соединяется с контактом 2, к 4-му контакту подключается один из проводов питания. Другой провод соединяется со второй обмоткой дросселя.
В отличие от электромагнитной аппаратуры, электронная схема является достаточно сложным устройством, с множеством рабочих элементов. Принцип действия ЭПРА остался точно таким же, поскольку конструкция самих ламп не изменилась. Просто сам рабочий процесс выполняется совершенно по-другому. Благодаря легким и компактным деталям, заметно снизился общий вес и размеры прибора.
Подключение устройства осуществляется с помощью специальных контактных колодок, разделенных между собой. К первой группе колодок подключается внешнее питание, а ко второй – сама лампа. Все компоненты ЭПРА располагаются на специальной плате и включают в себя:
- Выпрямитель. Выполняет преобразование постоянного тока в переменный.
- Фильтр, ограничивающий электромагнитные помехи.
- Сглаживающий фильтр, защищающий от скачков и перепадов напряжения.
- Дроссель.
- Корректор коэффициента мощности.
- Инвертор, выполненный по полумостовой схеме.
Как правильно выбрать
Перед тем как выбрать устройство для ламп освещения обращают внимание на такие характеристики:
Тип, мощность и количество ламп в схеме освещения. В листе спецификаций для электронного флуоресцентного балласта будет указано, какие типы и конфигурации светильников предназначены для работы балласта.
Тип запуска — мгновенный или запрограммированный. Если система освещения характеризуется частым переключением из-за датчиков присутствия или других факторов, выбирают «запрограммированный запуск». В противном случае — «мгновенный», который является лучшим выбором.
Балластный фактор. Обычный балластный коэффициент (от 0,77 до 1,1) является значением по умолчанию для большинства общего освещения. Низкий балластный коэффициент ( 1.1) полезен, когда целью является увеличение световой мощности для таких помещений, как склады или крупные розничные магазины. В этом случае пользователь получит примерно 10% увеличение светового потока по сравнению с номинальной освещенностью прибора.
Входное напряжение. Некоторые ЭБ обеспечивают универсальное напряжение, другие удельное. В любом случае, проверяют требования к входному напряжению — 120/277/347 В.
Минимальная начальная температура. Листы спецификации балласта включают температуры, которые будут варьироваться в зависимости от типа светильника, управляемой балластом. Например, ЭБ может показывать минимальную начальную температуру с −17 С до +30 С. Очевидно, что вариации довольно значительные. Поэтому при выборе ЭБ исходят из минимальной и максимальной температуры воздуха в помещении.
Нормальная схема подключение — параллель. Это позволяет другим светильникам оставаться зажженными, даже если одна лампа в приборе гаснет.
Контроль анти-стратификации: страты — это нежелательные яркие и тусклые области, которые могут образовывать структуру стоячей волны по всей длине светильника. Полоски более вероятны, когда лампа работает при низких температурах. Производители разработали способы минимизации этих зон и часто ссылаются на функцию защиты от зачистки в спецификации на ЭБ.
Оценка звука. ЭБ с рейтингом «А» будет тихо гудеть, с рейтингом «D» вызовет ярко выраженный шум
Важность оценки звука зависит от назначения помещений.
В библиотеках устанавливают ЛЛ с максимально тихим балластом, в то время как этот параметр, не так важен для складов.
Светодиодный переход: у некоторых производителей ЭБ есть списки мгновенных и запрограммированных стартовых балластов, которые они называют «LED Ready».
Гарантия производителя.
Вам это будет интересно Все о Led лампочках
Выбор ЭПРА
Если Вы решились на модернизацию светильников путем замены дросселя и стартера на современный электронный пускатель для люминесцентных ламп, то сначала стоит выбрать производителя. От неизвестных марок и подозрительно дешевых устройств лучше отказаться. Но и нельзя сразу сказать, что дешево – это плохо и недолговечно. Информация сегодня открыта вся, желательно ознакомиться и с отзывами по конкретной модели в Интернете. Среди производителей внимания заслуживают:
- Helvar,
- Philips,
- Osram,
- Tridonic
Виды ЭПРА
При выборе важно изучить документацию. Наиболее важны следующие характеристики:
- Тип источника света,
- Мощность источников света,
- Условия и режимы эксплуатации.
У некоторых моделей марок Tridonic, Philips, Helvar имеется возможность подключения как переменного напряжения (~220), так и постоянного (=220).
Можно ли обойтись без него
Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.
ЭПРА для люминесцентных ламп
Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:
- Имеет небольшие массогабариты.
- Не гудит.
- Не вызывает мерцания лампы с частотой сети.
- Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
- Запускает ЛДС практически мгновенно.
Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.
Можно ли изменять яркость ЛЦЛ светорегулирующими регуляторами?
Нет нельзя. Электронные балласты с ними работать не будут. Такими регуляторами можно регулировать яркость ламп накаливания или температуру паяльников.
Что делать, если компактные ЛЦЛ не выдерживают заявленного производителем гарантийного срока эксплуатации, например, 1 год?
В таком случае, производители рекомендуют сдать их в тот магазин, где купили. Лучшая продукция в наше время, от торгового производителя Pelin https://inventrade.ru/info/brands/pelin/. Естественно, для этого вы должны сохранить упаковку и чек магазина. Обычно, магазины, меняют ЛЦ лампы, не выдержавшие гарантийного срока.
На рынках, самые «добросовестные» продавцы дают «гарантию» на ЛЦЛ. максимум две недели, т.е. только в течение этого времени они согласны поменять сгоревшую лампу. В любом случае, при покупке компактной ЛЦЛ вам необходимо обговорить этот вопрос с продавцом. Устанавливая в люстру новою компактную ЛЦЛ, напишите карандашом на ее пластмассовом стакане (цоколе) дату ввода в эксплуатацию, после, когда она повредится, вам легко будет вычислить время ее эксплуатации.
Области применения электронных балластов для люминесцентных ламп
Электронный балласт присутствует в системе люминесцентной лампы в любом случае. Однако можно выделить некоторые случаи, когда именно он окажет максимальную полезность:
- Применение люминесцентной лампы в помещениях со старой проводкой и, как следствие, не редкими перепадами напряжения;
- В помещениях, где требуется ровный и качественный свет (например, в производственных цехах по сборке чего-либо или других местах, где важную роль играет хорошее освещение);
- В детских учреждениях и местах массового скопления народа (балласт сам «ликвидирует» поломку, что косвенно помогает избежать возможных чрезвычайных происшествий);
- В местах с необходимостью постоянного освещения и, как следствие, высокими показателями потребления энергии (как было сказано ранее, инвертор сокращает потребление электроэнергии).
Как утилизируют люминесцентные лампы
Внутри колб люминесцентных ламп находится ртуть. Это вещество по ядовитости относится к первому классу опасности.
Содержание ртути в лампе находится в пределах 1÷70 мг (доходит до 1 г). Но даже такой дозы достаточно, чтобы при повреждении колбы нанести вред здоровью человека и другим живым организмам. При регулярном воздействии ядовитых паров ртути происходит ее накапливание в теле, что вызывает развитие различных заболеваний.
Законодательная база
По этой причине в законодательной области разработаны правила обращения и утилизации электронного и электротехнического оборудования, содержащего ртуть:
- на территории Европейского Союза с 2006 года действует Директива RoHS;
- в России – правительственное постановление от 3.09.2010 №681, классификация операций сектора государственного управления (КОСГУ 2020 года подстатьи 225, 226, 244), общероссийский классификатор продукции (ОКПД), ГОСТы (например, 6825-91 – «Лампы трубчатые для общего освещения») и другие нормативные акты.
По закону утилизацию и вывоз ртутьсодержащего оборудования могут выполнять только фирмы, у которых есть на это лицензия. Частные предприниматели и предприятия обязаны делать паспорта на ядовитые отходы и сдавать их на переработку.
Предварительно они должны заключить договор (на 1 год) с утилизирующей фирмой и дать заявку на переработку. При этом стоимость утилизации зависит от вида ламп, а периодичность вывоза отходов устанавливается по договоренности с каждой обслуживаемой организацией отдельно.
Храниться рабочие и отработавшие ртутьсодержащие светильники должны в специально оборудованных складских помещениях с хорошей вентиляцией. Предприятия и предприниматели должны вести журнал хранения, эксплуатации, переработки и замены люминесцентных ламп.
Методы утилизации
На территории РФ широкое распространение получил термовакуумный метод утилизации. Порядок переработки при этом следующий:
- собранные лампочки дробятся прессом;
- раздробленный материал помещают в камеру с большой температурой;
- образующийся при нагреве газ собирается в вакуумной ловушке.
При аналогичном методе на испаряющийся газ воздействуют жидким азотом. Это вызывает затвердение ртути и упрощает ее сбор.
На практике применяется также способ утилизации с помощью химических реагентов. Ими обрабатывают раздробленные светильники. В результате реакции с ртутью образуются устойчивые соединения. Они гораздо безопаснее.
Полученную ртуть используют повторно. Выделенный люминофор отправляют для захоронения на полигонах.
Процесс утилизации люминесцентных ламп
В некоторых городах есть целые полигоны, где утилизируют токсические вещества. В Москве, например, ртутьсодержащие лампочки, используемые в быту, можно бесплатно сдавать в районные отделения ЖЭКов. По всей стране вышедшие из строя лампы принимают в магазинах IKEA, и других специализированных точках продаж.
Согласно статистике только около 10 % лампочек перерабатывают по правилам, а 90 % утилизируют без их соблюдения. Утилизация вредных отходов является актуальной проблемой сегодняшнего дня из-за ухудшения экологии. В этом деле важна привычка и ответственное отношение к себе и окружающей природе.
По своим техническим характеристикам люминесцентные лампы превосходят лампочки накаливания. Их энергосберегающие показатели и разнообразие вызвали широкое использование таких светильников в общественных и в бытовых условиях.
Сравнительно простое устройство и понятный принцип работы делают возможным при минимальных навыках и знаниях обслуживать эти устройства. Понимание маркировки позволяет самостоятельно заменять вышедший из строя элемент схемы аналогичным по характеристикам. Но постоянно следует помнить и соблюдать технику безопасности.
https://youtube.com/watch?v=SU4dzAsRUUM
Выводы и полезное видео по теме
Как работает электронный прибор в люминесцентной лампе. Подробное описание устройства и принципа работы изделия:
Чем отличаются друг от друга электромагнитный и электронный балласты. Особенности каждого из модулей и специфические нюансы их использования в бытовых осветительных приборах:
https://youtube.com/watch?v=HZ74IMaqksA
Особенности работы светильников, оснащенных балластами разных типов. Какие элементы более эффективны и почему. Практические рекомендации и полезные советы из личного опыта мастера:
Чтобы правильно подобрать балласт для бытовых ламп люминесцентного типа, нужно знать, как устроен этот элемент и какую функцию выполняет. Имея такую информацию, а также разбираясь в разновидностях прибора, приобрести нужную модификацию удастся без всяких сложностей.
Стоимость модуля зависит от завода-изготовителя, но даже брендовые изделия имеют вполне лояльную цену и ущерба бюджету среднестатистического потребителя не наносят.