Ионистор — устройство, применение, технические параметры

Характеристика заряда

Время заряда 1-10 секунд. Первоначальный заряд может быть выполнен очень быстро, а заряд верхней части займет дополнительное время. Необходимо предусмотреть ограничение пускового тока при зарядке пустого суперконденсатора, поскольку он будет вытягивать все возможное. Ионистор не подлежит перезарядке и не требует обнаружения полной зарядки, ток просто перестает течь при заполнении. Сравнение производительности между ионистором для автомобиля и Li-ионом.

Функция Ионистор Литий-ионный (общий)
Время заряда 1-10 секунд 10-60 минут
Жизненный цикл часов 1 млн или 30 000 500 и выше
Напряжение От 2,3 до 2,75 В 3,6 В
Удельная энергия (Вт / кг) 5 (типичный) 120-240
Удельная мощность (Вт / кг) До 10000 1000-3000
Стоимость за кВтч 10 000 $ 250-1,000 $
Срок службы 10-15 лет От 5 до 10 лет
Температура зарядки От -40 до 65 °C От 0 до 45 °C
Температура нагнетания От -40 до 65 °C От -20 до 60 °C

Использование

Транспортные средства

: неверное или отсутствующее изображение В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 3 марта 2020 года

К:Википедия:Статьи без источников (тип: не указан)

Тяжелый и общественный транспорт

В настоящее время автобусы с питанием от ионисторов выпускаются фирмами Hyundai Motor и «Тролза».

Автобусы на ионисторах от Hyundai Motor представляют собой обыкновенные автобусы с электроприводом, питаемым от бортовых ионисторов. По задумке конструкторов из Hyundai Motor, такой автобус будет заряжаться на каждой второй или каждой третьей остановке, причём длительности остановки достаточно для подзарядки автобусных ионисторов. Hyundai Motor позиционирует свой автобус на ионисторах как экономичную альтернативу троллейбусу (нет необходимости прокладывать контактную сеть) или дизельному (и даже водородному) автобусу (электроэнергия пока дешевле дизельного или водородного топлива).

Автобусы на ионисторах от «Тролзы» технически представляют собой «бесштанговые троллейбусы». То есть конструктивно это троллейбус, но без штанг питания от контактной сети и, соответственно, с питанием электропривода от ионисторов.

Но особенно перспективны ионисторы в качестве средства реализации системы автономного хода для обычных троллейбусов. Троллейбус, оборудованный ионисторами, по маневренности приближается к автобусу. В частности, такой троллейбус может:

  • проходить отдельные короткие участки маршрута, не оборудованные контактной сетью (в том числе при необходимости двигаться в объезд, когда на каком-то участке маршрута движение по штатной трассе маршрута невозможно);
  • проходить места обрыва линии контактной сети;
  • возможность объезжать препятствия даже тогда, когда длина токоприёмных штанг не позволяет это сделать (водитель оборудованного ионисторами троллейбуса в этом случае просто опустит токоприёмные штанги и объедет препятствие, после чего вновь поднимет токоприёмные штанги и продолжит движение в штатном режиме);
  • отпадает надобность в развитии контактной сети в депо и на разворотных кольцах на конечных остановках — в депо и на разворотных кольцах оборудованные ионисторами троллейбусы маневрируют с опущенными токоприёмными штангами.

Таким образом, троллейбусная система, эксплуатируя оборудованные ионисторами троллейбусы, по гибкости приближается к обычной автобусной.

Автомобильный

Ё-мобиль — проект автомобиля, разрабатывавшийся в Российской Федерации, использовал суперконденсатор как основное средство для накопления электрической энергии. Сами эти суперконденсаторы пока не выпускаются серийно и разрабатывались параллельно с автомобилем.

Существуют проекты, объединяющие суперконденсатор и химический аккумулятор в едином блоке, что взаимно компенсирует недостатки тех и других. В результате получается накопитель с большим сроком службы, меньшей стоимостью и большим запасом энергии, чем при использовании обычных аккумуляторов.

Автогонки

Система KERS, применяющаяся в «Формуле-1», использует именно ионисторы.

Бытовая электроника

Применяются для основного и резервного питания в фотовспышках, фонарях, карманных плеерах и автоматических коммунальных счётчиках — везде, где требуется быстро зарядить устройство. Лазерный детектор рака молочной железы на ионисторах заряжается за 2,5 минуты и работает 1 минуту.

В 2007 году выпустили шуруповёрт, в котором ионисторы общей ёмкостью 55 фарад заряжаются 1,5 минуты. Заряда хватает на 22 шурупа.К:Википедия:Статьи без источников (тип: не указан)[источник не указан 1892 дня

В магазинах автоаксессуаров продаются ионисторы ёмкостью порядка 1Ф, предназначенные для питания автомагнитол (и аппаратуры, питаемой от разъёма прикуривателя) при выключенном зажигании и в период старта двигателя (на многих автомобилях на время работы стартёра отключаются все остальные потребители), а также для сглаживания скачков напряжения при пиковых нагрузках, например, работы мощных динамиков.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Ионистор — устройство, применение, технические параметры

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.

Популярные статьи  Можно ли светодиодную лампу (ecola) 4.2W-220v подключить напрямую, к проводу с вилкой!

Ионистор — устройство, применение, технические параметры

Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии — с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Гибкие устройства на основе полимеров

Ионистор набирает и сохраняет энергию с высокой скоростью, образуя электрохимические двойные слои зарядов или посредством поверхностных окислительно-восстановительных реакций, что приводит к высокой плотности мощности с длительной циклической стабильностью, низкой стоимостью и защитой окружающей среды. PDMS и ПЭТ являются в основном используемыми субстратами при реализации гибких суперконденсаторов. В случае пленки PDMS может создавать гибкие и прозрачные тонкопленочные ионисторы в часах с высокой циклической стабильностью после 10 000 циклов при изгибе.

Однослойные углеродные нанотрубки могут быть дополнительно включены в пленку PDMS для дальнейшего улучшения механической, электронной и термической стабильности. Аналогичным образом, проводящие материалы, такие как графен и УНТ, также покрываются пленкой ПЭТ для достижения, как высокой гибкости, так и электропроводности. Помимо ПДМС и ПЭТ другие полимерные материалы также привлекают растущие интересы и синтезируются различными методами. Например, локализованное импульсное лазерное облучение использовалось для быстрого преобразования первичной поверхности в электрическую проводящую пористую углеродную структуру с заданной графикой.

Природные полимеры, такие как нетканые материалы из древесных волокон и бумаги, также могут использоваться в качестве подложек, которые являются гибкими и легкими. УНТ наносится на бумагу для получения гибкого УНТ бумажного электрода. Из-за высокой гибкости бумажной подложки и хорошего распределения УНТ удельная емкость и плотность мощности и энергии меняется менее чем на 5% после изгиба на 100 циклов при радиусе изгиба 4,5 мм. Кроме того, из-за более высокой механической прочности и лучшей химической стабильности бактериальные наноцеллюлозные бумаги также используться для изготовления гибких суперконденсаторов, например для кассетного плеера walkman.

Как работает суперконденсатор

Принцип действия ультраконденсатора схож с обычным конденсатором, но комплектация внутреннего блока отличается материалами, из которых он изготовлен.

Контур делают из пористого материала, обладающего высокой электропроводимостью. Диэлектриком выступает электролит.

Ионистор — устройство, применение, технические параметры

В основу функционирования ионистора заложен принцип разложения разной полярности потенциалов – на катоде создаются ионы с отрицательным зарядом, а на аноде – с положительным.

Когда электролит проходит сквозь сепаратор, который разделяет полярность ионов, предотвращается замыкание. Напряжение сохраняется в устройстве статистическим методом.

Ионистор — устройство, применение, технические параметры

В течение небольшого временного отрезка суперконденсаторы способны накопить большой объем электроэнергии, что снижает время для их подзарядки.

Электрический модуль изготавливают с охлаждением нескольких видов:

  • естественное;
  • водяное;
  • воздушное.

Разновидности суперконденсаторов

В настоящее время все ультраконденсаторы разделяют на три основных вида:

  1. Двухслойные.
  2. Гибридные.
  3. Псевдоконденсаторы.

Двухслойные конденсаторы

Данные устройства представляют собой изделие в конструкции которых применяются электроды с наличием пор, покрытых углеродом повышенной проводимости между ними находится специальный сепаратор. Благодаря разделению зарядов на электродах происходит образование значительного значения потенциала, в результате чего происходит накопление энергии.

Ионистор — устройство, применение, технические параметры

Двойной слой в такой конструкции выполняет роль конденсатора поверхностного. Благодаря электролиту два слоя объединяются в последовательную цепочку.

Гибридный суперконденсатор

Данный вид накопителей электроэнергии считается промежуточным между аккумуляторами и конденсаторами. В конструкции таких устройств применяются электроды, изготовленные из различных материалов, в результате чего емкость заряд накапливается разными способами.

Ионистор — устройство, применение, технические параметры

Непосредственно сам процесс восстановления заряда происходит благодаря реакции окислительно-восстановительного вида. Такая конструкция позволяет значительно увеличить внутреннюю емкость и повысить рабочее напряжение. Электроды состоят из соединения сложных проводящих полимеров, которые в сочетании между собой представляют материал повышенных электрических характеристик.

Псевдоконденсаторы

Данные устройства представляют собой изделия несколько похожие по свои основным характеристикам на АКБ, они имеют два твердых электрода.

Ионистор — устройство, применение, технические параметры

В результате чего стало возможным применять конденсатор вместо аккумулятора. Принцип действия состоит из двух основных механизмов:

  • рабочие циклы заряд-разряд;
  • электростатические реакции, которые наблюдаются в устройствах с двойным слоем.

Достоинства и недостатки

Среди достоинств прибора следует выделить следующие:

Время заряда. EDLC имеют время зарядки и разрядки, сравнимое со временем обычных конденсаторов. Из-за низкого внутреннего сопротивления можно добиться высоких токов заряда и разряда. Чтобы достичь полностью заряженного состояния батареи обычно уходит до нескольких часов. Например, как у батареи сотового телефона, в то время как EDLC могут зарядиться менее чем за две минуты.

Удельная мощность. Конкретная мощность батареи или EDLC является мерой, используемой для сравнения различных технологий по выходной мощности, делённой на общую массу устройства. EDLC имеют удельную мощность в 5−10 раз большую, чем у батарей. Например, в то время как литий — ионные батареи имеют удельную мощность 1−3 кВт / кг, удельная мощность типичного EDLC составляет около 10 кВт / кг

Это свойство особенно важно в приложениях, требующих быстрого сброса энергии из устройств хранения.
Жизнеспособность и безопасность цикла. Батареи EDLC более безопасны, чем обычные батареи при неправильном обращении

В то время как батареи могут взрываться из-за чрезмерного нагрева при коротком замыкании, EDLC не нагреваются так сильно по причине низкого внутреннего сопротивления.
EDLC могут заряжаться и разряжаться миллионы раз и отличаются практически неограниченным сроком службы, в то время как батареи имеют цикл жизни в 500 раз и ниже. Это делает EDLC очень полезными в приложениях, где требуются частые хранения и выделения энергии.
Продолжительность жизни EDLC составляет от 10 до 20 лет, при этом ёмкость за 10 лет снижается с 100% до 80%.
Благодаря их низкому эквивалентному сопротивлению EDLC обеспечивают высокую плотность мощности и высокие токи нагрузки для достижения практически мгновенного заряда в секундах. Температурные характеристики также сильны, обеспечивая энергию при температурах до -40 C ° .

Популярные статьи  Могут ли духовка и варочная панель отключаться отдельными автоматами?

EDLC имеют некоторые недостатки:

  1. Одним из недостатков является относительно низкая удельная энергия. Конкретная энергия EDLC является мерой общего количества энергии, хранящейся в устройстве, делённой на её вес. В то время как литий — ионные батареи, обычно используемые в сотовых телефонах, имеют удельную энергию 100−200 Втч/кг, EDLC могут хранить только 5 Вт/кг. Это означает, что EDLC, обладающий такой же ёмкостью, как обычная батарея, будет весить в 40 раз больше.
  2. Линейное напряжение разряда. Например, батарея с номинальным напряжением 2,7 В, когда при 50%-м заряде все равно будет выводиться напряжение, близкое к 2,7 В. EDLC, рассчитанный на 2,7 В при 50%-м заряде, выдаёт ровно половину своего максимального заряда — 1,35 В. Это означает, что выходное напряжение упадёт ниже минимального рабочего напряжения устройства, работающего на EDLC, и оно должно будет отключиться, прежде чем использовать весь заряд в конденсаторе. Решением этой проблемы заключается в использовании DC-преобразователей. Однако этот подход создаёт новые трудности, такие как эффективность и шум.
  3. Они не могут использоваться в качестве постоянного источника питания. Одна ячейка имеет обычно напряжение 2,7 В и если требуется более высокое напряжение, ячейки должны быть соединены последовательно.
  4. Стоимость обычных EDLC в 20 раз выше, чем у Li-ion аккумуляторов. Однако она может быть уменьшена за счёт новых технологий и массового производства ионисторов.

Разновидности суперконденсаторов

Где применяется освещение искусственное

Ионисторы делятся на три вида:

  1. Идеальный ионистор. Название было присвоено ионному конденсатору, в котором электроды из углерода поляризовались на 100%. При полном отсутствии электрохимических процессов энергия накапливается благодаря ионному переносу электронов с одного на другой электрод. Электролитом в «идеальных» ионисторах служат растворы основания KOH и серной кислоты H2SO4.
  2. Гибридные ионисторы – это конденсаторы со слабо поляризуемыми электродами. Скопление энергии в ДЭС происходит на поверхности одного из электродов.
  3. Псевдоионисторы обладают высокой удельной ёмкостью. На поверхности электродов происходят возвратные электрохимические реакции.

Ионистор — устройство, применение, технические параметры
Устройство ионистора

Ионистор своими руками

При желании можно сделать суперконденсатор своими руками. Такое устройство будет обладать худшими параметрами и прослужит недолго (пока не высохнет электролит), но даст представление о работе таких устройств в целом.

Для того чтобы изготовить ионистор своими руками, необходимы:

  • медная или алюминиевая фольга;
  • поваренная соль;
  • активированный уголь из аптеки;
  • вата;
  • гибкие провода для выводов;
  • пластмассовая коробочка для корпуса.

Порядок изготовления ультраконденсатора следующий:

  • отрезать два кусочка фольги такого размера, чтобы они помещались на дно коробки;
  • припаять к фольге провода;
  • смочить уголь водой, растереть в порошок и высушить;
  • приготовить 25% раствор соли;
  • смешать угольный порошок с солевым раствором до пастообразного состояния;
  • смочить раствором соли вату;
  • нанести пасту тонким ровным слоем на фольгу;
  • сделать “сэндвич”: фольга углём вверх, тонкий слой ваты, фольга углём вниз;
  • поместить конструкцию в коробку.

Допустимое напряжение такого прибора – 0,5 В. При его превышении начинается процесс электролиза, и ионистор превращается в газовый аккумулятор.

Ионистор — устройство, применение, технические параметры
Самодельный ионистор 57000 мкФ 0.25 В

Интересно. Если собрать несколько таких конструкций, то рабочее напряжение вырастет, но ёмкость упадёт.

Ионисторы – это перспективные электроприборы, способные, благодаря большой скорости заряда и разряда, заменить обычные аккумуляторы.

Отличия суперконденсаторов от аккумуляторов

Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше.

Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.

Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.

Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений – использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.

В портативных электронных приборах используются источники питания разнообразных типов

В таких устройствах, как планшеты, смартфоны и ноутбуки важное значение имеет удельная энергоемкость. Чем больше данный показатель, тем выше будет емкость устройства при тех же физических параметрах

Преимущества

  • Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
  • Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
  • Устройства такого вида имеют намного меньшую массу и габаритные размеры.
  • Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
  • Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
  • Широкий интервал эксплуатационной температуры от -40 до +70 градусов.
Популярные статьи  Акустический кабель: характеристики, конструкции, принцип работы

Будет интересно Несколько фактов об электролитических конденсаторах

Недостатки

  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.

Ионистор — устройство, применение, технические параметры
Плоский ионистор

Принцип работы и возможные конструкции

Существует два типа электролитов, которые чаще всего используются сейчас производителями ионисторов: водные (водорастворимые) и органические (водонерастворимые). Безводный электролит позволяет прикладывать напряжение до 3 В к ячейке ионистора, что в два раза выше по сравнению с водорастворимым электролитом, для которого это напряжение не превышает 1,5 В. В данном случае двойной электрический слой работает как изолирующий и при приложении постоянного внешнего напряжения не позволяет протекать сквозному току. При конкретном уровне напряжения определенной полярности за счет электрохимических процессов начнет протекать ток. Величина этого напряжения названа «напряжением разложения» или «напряжением электрохимического распада электролита». Дальнейшее увеличение напряжения заставит электролит разлагаться более интенсивно, приводя к появлению дополнительного тока, и ионистор выйдет из строя. Поэтому при зарядке приложенное к ионистору напряжение ограничено напряжением разложения, вследствие чего довольно часто ионисторы соединяют последовательно.

Как было сказано выше, положительные и отрицательные заряды формируются на поверхности электрода, образуя, таким образом, с зарядом электрода двойной электрический слой. Границей раздела в этом случае будет двойной электрический слой (рис. 2а). Эта область увеличивается при приложении более высокого напряжения (рис. 2б), и накапливаемый заряд увеличивается. Толщина двойного электрического слоя очень мала и сопоставима с размером молекулы, то есть около 5–10 нм. В качестве электродов, например, в ионисторах Panasonic используется активированный уголь (в виде мелкодисперсной фракции), изготовленный по специальной порошковой технологии, и органический электролит. Электролит проникает между частицами активированного угля, и электрод, таким образом, «пропитан» электролитом. Общую емкость ионистора можно представить, как большое количество малых конденсаторов, где каждая частица из активированного угля — своеобразный электрод для малого конденсатора с емкостью, обусловленной двойным электрическим слоем.

Ионистор — устройство, применение, технические параметры
Рис. 2. Образование двойного электрического слоя (а) и увеличение заряда при приложении напряжения (б)

Общая емкость ионистора может быть представлена как:

где d — толщина двойного электрического слоя 5–10 нм, S — общая площадь поверхности электрода из активированного угля.

Поскольку электрод ионистора представляет собой совокупность огромного количества частиц активированного угля, он имеет очень большую «развитую» площадь поверхности, приблизительно до 2500–3000 см²/г. Это позволяет получить емкость до нескольких десятков фарад.

На рис. 3 представлена одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic. Между электродами для предотвращения проникновения ионов расположен «сепаратор» с хорошими изоляционными свойствами, что позволяет не допустить короткого замыкания между электродами.

Рис. 3. Одна из возможных конструкций ионистора в поперечном разрезе на примере EN серии Panasonic

Как зарядить ионистор

Для зарядки этого элемента нужен источник питания. Если он имеется в схеме, и прибор работает корректно, то ионистор заряжается сам по себе и поддерживает напряжение, передаваемое от аккумулятора или электрической сети. Если необходимо зарядить приспособление самостоятельно, то подойдет схема, описная ниже.

Ионистор — устройство, применение, технические параметры
Пример подключения для зарядки

Прибор запитывают от 12-вольтного адаптера. Затем используется стабилизатор напряжения и тока для регулирования 5,5 В для зарядки элемента. Это напряжение подается на конденсатор через полевой MOSFET-транзистор, который действует в роли переключателя. Он замыкается только тогда, когда напряжение в ионисторе падает до 4,8 В.

Важно! Если напряжение повышается, то транзистор размыкается, и зарядка прекращается

Добавить комментарий