Метеостанция на ардуино своими руками

Ардуино. Метеостанция на LCD 1602 и DHT11

Метеостанция на ардуино своими руками
Ардуино. Метеостанция с дисплеем LCD 1602 и DHT22

После сборки схемы, загрузите в микроконтроллер следующий скетч (здесь ссылка на скачивание архива со скетчем для метеостанции и необходимыми библиотеками). Информация с датчика DHT22 выводиться будет на монитор порта Arduino IDE и на жидкокристаллический дисплей 1602a, для отображения информации использован русский шрифт для LCD и символы (в скетче есть подробные комментарии).

Скетч для метеостанции с DHT11 на Ардуино

#include Wire.h>                 // библиотека для протокола IIC 
#include LiquidCrystal_I2C.h>    // подключаем библиотеку LCD IIC
LiquidCrystal_I2C lcd(0x27,20,2); // присваиваем имя lcd для дисплея

#include "DHT.h"   // подключаем библиотеку для DHT11
DHT dht(2, DHT11); // к какому порту подключаем датчик

// создаем символ градуса и присваиваем имя "gradus"
byte gradus = {
0b01100,0b10010,0b10010,0b01100,0b00000,0b00000,0b00000,0b00000
};

// создаем русскую букву "П"
byte P = {
0b11111,0b10001,0b10001,0b10001,0b10001,0b10001,0b10001,0b00000
};

// создаем русскую букву "У"
byte Y = {
0b10001,0b10001,0b10001,0b01111,0b00001,0b00001,0b01110,0b00000
};

// создаем русскую букву "Л"
byte L = {
0b00111,0b01001,0b10001,0b10001,0b10001,0b10001,0b10001,0b00000
};

// создаем русскую букву "Ж"
byte ZH = {
0b10101,0b10101,0b10101,0b01110,0b10101,0b10101,0b10101,0b00000
};

// создаем русскую букву "Ь"
byte znak = {
0b10000,0b10000,0b10000,0b11110,0b10001,0b10001,0b11110,0b00000
};

void setup() {
  Serial.begin(9600); // запуск последовательного порта
  lcd.init();         // инициализация LCD дисплея
  lcd.backlight();    // включение подсветки дисплея

  lcd.createChar(1, gradus);
  lcd.createChar(2, P);
  lcd.createChar(3, Y);
  lcd.createChar(4, L);
  lcd.createChar(5, ZH);
  lcd.createChar(6, znak);
}

void loop() {
  // если нужны точные значение, то используйте float, вместо byte
  byte h = dht.readHumidity();    // считываем значение температуры
  byte t = dht.readTemperature(); // считываем значение влажности

  Serial.print("Temperature: ");
  Serial.println(t);   // отправляем значение температуры на монитор

  Serial.print("Humidity: ");
  Serial.println(h);   // отправляем значение температуры на монитор

  Serial.println(" "); // пустая строка

  lcd.setCursor(0,0);  // ставим курсор на 1 символ первой строки
  lcd.print("TEM");    // используем латинские буквы
  lcd.print(char(2));  // выводим русскую букву "П"
  lcd.print("EPAT");   // используем латинские буквы
  lcd.print(char(3));  // выводим русскую букву "У"
  lcd.print("PA: ");   // используем латинские буквы
  lcd.print(t);        // выводим значение температуры на LCD
  lcd.print(char(1));  // выводим знак градуса

  lcd.setCursor(2,1);  // ставим курсор на 3 символ второй строки
  lcd.print("B");      // используем латинские буквы
  lcd.print(char(4));  // выводим русскую букву "Л"
  lcd.print("A");      // используем латинские буквы
  lcd.print(char(5));  // выводим русскую букву "Ж"
  lcd.print("HOCT");   // используем латинские буквы
  lcd.print(char(6));  // выводим русскую букву "Ь"
  lcd.print(": ");     // используем латинские буквы
  lcd.print(h);        // выводим значение влажности на LCD
  lcd.print("%");      // выводим знак процент
  
  delay(1000);
}

Пояснения к коду:

  1. в скетче можно использовать до 8 русских букв и символов, при необходимости заменяйте буквы из кириллицы — латинскими буквами;
  2. скорость обновления данных замените на необходимое значение.

Датчик на Arduino Uno и плате расширения Troyka Shield

Рассмотрим еще одну погодную станцию. Ее особенности:

  • использование цифрового метеосенсора troyka;
  • термометр DS18B20;
  • барометр Troyka V2.
  • хранение данных на карточке MicroSD — для удобства их последующего анализа на любом устройстве.

Компоненты

Для проекта требуются:

  • контроллер Arduino Uno;
  • плата расширения Troyka Shield;
  • метеодатчик;
  • четырехразрядный цифровой дисплей-индикатор;
  • барометр с troyka-блоком подтяжки;
  • картридер и карточка micro-SD.

Порядок сборки

Система собирается по шагам.

  1. Установить плату расширения на Ардуино.
  2. Подключить к пинам шины I2C метеодатчик.
  3. Подсоединить дисплей в разъемы e-f на схеме. Пин CS идет на пин 10 микрокомпьютера Ардуино.
  4. Барометр вставляется в слот B, пины шины I2C.
  5. Термометр подключается в слот C, пин 4. Для его работы потребуется дополнительный модуль подтяжки.
  6. И, наконец, к слоту D и на пин 8 подключается картридер.

Программа

Программа передатчика

Сперва рассмотрим программу передающей части:

Для передачи влажности и температуры в одном сообщении я соединяю их вместе. Сначала данные считываются в переменную как целые числа, потом целые числа преобразовываются в массив символов, а затем они соединяются друг с другом. На приемной стороне данные будут разделены на отдельные символы. Делая это, я ограничиваю себя двумя цифрами градусов. Если датчик находится в среде с температурой менее 10°C, я буду получать на дисплее символы мусора. Например, если температура составляет 20°C, а влажность – 45%, то будет передаваться сообщение 2045, и всё хорошо. Если температура равна 9°C, а влажность – 78%, то передастся сообщение 978x, где «x» – случайный символ. Поэтому, если вы будете собирать данный беспроводной термометр, я советую вам изменить программу для передачи правильных данных, когда температура будет меньше 10°C.

Программа приемника

Интересный способ использования библиотеки LiquidCrystal – это создание пользовательских символов. С помощью я создал символ градусов. Таким же способом вы можете создать и свои собственные символы. Чтобы создать пользовательский символ или значок, вам необходимо объявить его, как массив из восьми байт, и «нарисовать», какие пиксели будут включены (1 – включен, 0 – выключен).

В функции вы создаете его с помощью . принимает два аргумента: номер позиции для хранения символа и массив байт, в котором определено, какие пиксели будут отображаться. В нашем случае это . Затем символ выводится на LCD с помощью функции .

Характеристики датчика DHT11

Метеостанция на ардуино своими руками
Рис. 1: общий вид датчика DHT11 Следует отметить, что данный датчик выбран как наиболее доступный и удобный в применении. Помимо этого он характеризуется следующими рабочими параметрами:

  • Напряжение питания от 3 до 5 В;
  • Потребляет от источника питания ток в 2,5 мА;
  • Способен измерять влажность окружающего пространства в пределах от 20 до 80%;
  • Температурные колебания измеряет в пределах от 0 до 50°С;
  • Погрешность при измерении влажности составляет 5%, а при измерении температуры в пределах 2%;
  • Частота измерений составляет одно измерение в секунду;
  • Габариты датчика составляют 12×15,5*5,5 мм.

Датчик DHT11 имеет пластиковый корпус и оснащается четырьмя контактами, такое количество выводов обеспечивает удобство подсоединения к устройствам обработки данных. В работе самодельной метеостанции все четыре вывода не используются, из них вам понадобится только три VCC, GND, DATA. Запитать датчик вы можете от любого источника с уровнем напряжения на выходе от 3 до 5 В.

В некоторых схемах можно встретить подключение резистора на 5 – 10 кОм к выводу передачи данных от датчика к микроконтроллеру. Следует отметить, что в данной ситуации этого делать не нужно, так как резистор уже входит в состав платы.

Метеостанция на ардуино своими руками
Рис. 2: модуль датчика DHT11

В интернете вы найдете как отдельные датчики, так и уже собранные в готовый модуль. Последние гораздо удобнее, поэтому предпочтительнее использовать их

Несмотря на то, что внешний вид модулей отличается, их принцип подключения идентичен, вам необходимо лишь обратить внимание на расположение выходов с датчика

Скетч

p160_meteostation.ino
#include <math.h>
int minute = 1;
 
// Параметр конкретного типа термистора (из datasheet):
#define TERMIST_B 4300 
 
#define VIN 5.0
 
void setup()
{
  // мы хотим передавать информацию на компьютер через USB, а
  // точнее через последовательный (англ. serial) порт.
  // Для этого необходимо начать (англ. begin) передачу, указав
  // скорость. 9600 бит в секунду — традиционная скорость.
  // Функция «begin» не является глобальной, она принадлежит
  // объекту с именем «Serial». Объекты — это «продвинутые»
  // переменные, которые обладают собственными функциями,
  // к которым обращаются через символ точки.
  Serial.begin(9600);
  // передаём заголовок нашей таблицы в текстовом виде, иначе
  // говоря печатаем строку (англ. print line). Символы «\t» —
  // это специальная последовательность, которая заменяется на
  // знак табуляции (англ. tab): 8-кратный выровненный пробел
  Serial.println("Minute\tTemperature");
}
 
void loop()
{
  // вычисляем температуру в °С с помощью магической формулы.
  // Используем при этом не целые числа, а вещественные. Их ещё
  // называют числами с плавающей (англ. float) точкой. В
  // выражениях с вещественными числами обязательно нужно явно
  // указывать дробную часть у всех констант. Иначе дробная
  // часть результата будет отброшена
 
   float voltage = analogRead(A0) * VIN  1024.0;
   float r1 = voltage  (VIN - voltage);
 
 
   float temperature = 1.( 1.(TERMIST_B)*log(r1)+1.(25. + 273.) ) - 273;
  // печатаем текущую минуту и температуру, разделяя их табом.
  // println переводит курсор на новую строку, а print — нет
  Serial.print(minute);
  Serial.print("\t");
  Serial.println(temperature);
 
  delay(60000); // засыпаем на минуту
  ++minute;     // увеличиваем значение минуты на 1
 
  // откройте окно Serial Monitor в среде Arduino, оставьте на
  // сутки, скопируйте данные в Excel, чтобы построить графики
}

Шаг третий. Подключаем ЖК-экран

Теперь я отучу свою метеостанцию от компьютера: добавлю собственный экранчик и выведу на него температуру в двух шкалах — Цельсия и Фаренгейта.

Популярные статьи  Определение места повреждения кабеля

Метеостанция на ардуино своими руками

Из кода программы я уберу команды, которые вызывали последовательный порт и группировали данные для отправки на компьютер.

Вместо них добавлю команды для работы с LED-дисплеем: подключение библиотеки, определение контактов и формирование строк. Первая строка меняться не будет, а во вторую выведу сразу два значения температуры: в градусах Цельсия и Фаренгейта.

У нас получилась простая метеостанция, которая умеет работать самостоятельно и передавать данные на компьютер. Это самый простой кирпичик для создания умного дома. Такие устройства можно использовать для контроля температуры в комнатах и парниках, управления системами отопления и подогрева воды, в качестве противопожарной сигнализации. Всё зависит только от вашей фантазии.

Метеостанция на ардуино своими руками

Схема на датчике DHT11

Выбор этого средства измерения температуры/влажности обусловлен его популярностью, дешевизной и надежностью — такой набор характеристик делает датчик отличным вариантом для домашнего проекта. DHT11 состоит из:

  • определяющего влажность резистора;
  • измеряющего температуру термистора.

Информация с выходов датчика идет на контроллер, в нашем случае это Ардуино.

Сенсор имеет следующие характеристики:

  • рабочее напряжение — 3–5 В;
  • питание — от источника в 2.5 мА;
  • диапазон измерения влажности окружающей среды — 20–80% с погрешностью в 5%;
  • диапазон измеряемых температур — 0–50 °С с погрешностью в 2%;
  • частота измерений — раз в секунду;
  • габариты — 15 на 15.15 на 5.5 мм.

На корпусе имеются четыре выхода, благодаря чему можно подключать сенсор к различным измерительным приборам. В домашней схеме будут использоваться лишь три:

  • DATA;
  • VCC;
  • GND.

В продаже встречаются и датчики DHT11 по отдельности, и в составе готового модуля. Рекомендуется найти последний вариант — он удобнее

В разных модулях внешний вид и конфигурация выходов могут различаться, но принцип везде одинаков, следует лишь обращать внимание на распиновку

Методика взаимодействия

Датчик транслирует цифровой сигнал с закодированными в нем значениями влажности и температуры. Оба параметра передаются одновременно.

Связь происходит по следующему принципу:

  • микроконтроллер отправляет сенсору запрос проверки состояния;
  • DHT11 меняет битовую кодировку и отдает на Arduino результат;
  • если формат запроса-ответа согласован с обеих сторон, на управляющую плату поступает пятибайтовый отчет о влажности и температуре.

Состав отчета:

  • первые два байта — уровень температуры;
  • вторые два — влажность;
  • пятый байт — нужная для предотвращения ошибки измерений и передачи контрольная сумма.

Программная часть

Чтобы собранная метеостанция на базе Ардуино заработала, понадобится подходящий скетч.

Скетч можно скачать здесь: https://cloud.mail.ru/public/JDX7/HJ94PKwoe

Принципиальная схема

Так будет выглядеть схема сборки станции:

После сборки, прошивки и запуска на экране станет отображаться влажность и температура. Дисплей покажет:

  • тепловой индекс — HiX;
  • температуру воздуха — Т (temperature, в градусах);
  • влажность — H (Humidity, в процентах).

Используется I2C-дисплей 1602.

Недостатки

Приведенная конструкция имеет один минус — при взаимодействии с экраном цифры округляются до целых. Для домашних вычислений это некритично, но при необходимости получить более точные величины придется заменить датчик на более продвинутый DHT22. Его поддержка в скетче есть по умолчанию.

Теперь рассмотрим образец метеостанции под Ардуино на основе DHT22 и с дополнительной функцией — измерением давления.

Исходный код

Код автономной части

meteo_sensor.ino
#include <Arduino.h>
#include <SHT1x.h>
#include <LowPower_Teensy3.h>
#include <ampline.h>
 
 
// Таймаут между посылками (не более 65535)
#define TIMEOUT 60000
 
// Количество попыток отправки посылки
#define ATTEMPTS 3
 
// Информационный пин передатчика
#define RF_PIN 5
 
// Пины датчика температуры и влажности
#define GND1_PIN 10
#define VCC1_PIN 11
#define GND2_PIN 7
#define VCC2_PIN 8
#define DATA_PIN 12
#define CLK_PIN  9
 
 
AmperkaLine rf(RF_PIN);
SHT1x sht1x(CLK_PIN, DATA_PIN);
 
 
void loop(void);
 
 
// Функция усыпления платы. Каждые TIMEOUT секунд
// будет вызываться функция loop_func.
TEENSY3_LP LP = TEENSY3_LP();
sleep_block_t* LP_config;
 
void sleep_mode(void)
{
    LP_config = (sleep_block_t*)calloc(1,sizeof(sleep_block_t));
 
    // Просыпаться будем по таймеру
    LP_config->modules = (LPTMR_WAKE);
    // Задаём таймаут для таймера
    LP_config->lptmr_timeout = TIMEOUT;
    // По истечении таймаута будет вызываться функция loop
    LP_config->callback = loop;
 
    LP.Hibernate(LP_config);
}
 
 
// Функция включения периферии
void periferial_start(void)
{
    // Включаем линию передачи данных
    pinMode(RF_PIN, OUTPUT);
 
    // Включаем питания и земли датчиков температуры и влажности
    pinMode(GND1_PIN, OUTPUT);
    pinMode(GND2_PIN, OUTPUT);
    pinMode(VCC1_PIN, OUTPUT);
    pinMode(VCC2_PIN, OUTPUT);
    digitalWrite(GND1_PIN, LOW);
    digitalWrite(GND2_PIN, LOW);
    digitalWrite(VCC1_PIN, HIGH);
    digitalWrite(VCC2_PIN, HIGH);
 
    // Включаем светодиод для индикации передачи
    pinMode(LED_BUILTIN, OUTPUT);
    digitalWrite(LED_BUILTIN, HIGH);
 
    // Выбираем в качестве опорного напряжения внутренний
    // источник (=1.2 В)
    analogReference(INTERNAL);
}
 
 
// Функция выключения периферии
void periferial_stop(void)
{
    // Выключаем линию передачи данных
    pinMode(RF_PIN, INPUT);
 
    // Выключаем датчик температуры и влажности
    pinMode(GND1_PIN, INPUT);
    pinMode(GND2_PIN, INPUT);
    pinMode(VCC1_PIN, INPUT);
    pinMode(VCC2_PIN, INPUT);
 
    pinMode(18, INPUT_PULLUP);
    pinMode(19, INPUT_PULLUP);
 
    // Выключаем светодиод
    digitalWrite(LED_BUILTIN, LOW);
}
 
void setup(void)
{
    // Ничего не инициализируем, сразу засыпаем
    sleep_mode();
}
 
// Эта функция выполняется раз в TIMEOUT секунд
void loop(void)
{
    unsigned long msg;
    byte temp, humidity, voltage;
 
    // Включаем периферию
    periferial_start();
 
    // Подождём, пока включится датчик температуры и влажности
    delay(30);
 
    // Получаем входные данные с сенсоров
    temp = (byte)(sht1x.readTemperatureC() + 40.)*2;
    humidity = (byte)sht1x.readHumidity();
    voltage = analogRead(A0)4;
 
    // Составляем из данных посылку
    msg = ;
    msg |= voltage;
    msg <<= 8;
    msg |= humidity;
    msg <<= 8;
    msg |= temp;
 
    // Отправляем несколько раз посылку
    for(int i = ; i < ATTEMPTS; i++) rf.send(msg);
 
    // Выключаем периферию
    periferial_stop();
 
    // После выхода из функции плата снова уснёт
}

Код платы, работающей в помещении

receiver.ino
#include <Arduino.h>
#include <SPI.h>
#include <Ethernet.h>
#include <ampline.h>
 
 
byte mac = { 0x90, 0xA7, 0xDA, 0x0F, 0xBC, 0x75 };
 
char server = "narodmon.ru";
 
EthernetClient client;
 
const int rfpin = 7;
AmperkaLine rf(rfpin);
 
void setup(void)
{
    pinMode(rfpin, INPUT);
    pinMode(6, OUTPUT);
 
    Serial.begin(9600);
    Serial.println("Started.");
}
 
void loop(void)
{
    static unsigned long pushtimeout = ;
    static float temp, humidity, voltage;
    unsigned long msg;
    int res;
 
    if((res = rf.receive(&msg)) == )
    {
        temp = ((float)(msg&0xFF))2. - 40.;
        msg >>= 8;
        humidity = (float)(msg&0xFF);
        msg >>= 8;
        voltage = (float)(msg&0xFF)  256. * 1.2 * 10 * 1.1;
 
        digitalWrite(6, HIGH);
 
        Serial.print("Temp: ");
        Serial.print(temp);
        Serial.print(", humidity: ");
        Serial.print(humidity);
        Serial.print(", voltage: ");
        Serial.println(voltage);
 
        digitalWrite(6, LOW);
    }
    else Serial.println('E');
 
    if(millis() - pushtimeout > 60000*5)
    {
        pushtimeout = millis();
 
        Serial.println("Starting Ethernet...");
 
        if (Ethernet.begin(mac) == )
        {
            Serial.println("Failed to configure Ethernet using DHCP");
            while(1) { }
        }
        delay(1000);
        Serial.println("connecting...");
 
        if (client.connect(server, 8283))
        {
            Serial.println("connected");
 
            client.println("#90-A7-DA-0F-BC-75#Sensor#55.751775#37.616856#0.0");
 
            client.print("#90A7DA0FBC7501#");
            client.print(temp, DEC);
            client.println("#In");
 
            client.print("#90A7DA0FBC7502#");
            client.print(humidity, DEC);
            client.println("#Humidity");
 
            client.print("#90A7DA0FBC7503#");
            client.print(voltage, DEC);
            client.println("#Voltage");
 
            client.println("##");
        } 
        else Serial.println("connection failed");
 
        {
            unsigned long tm = millis();
 
            while(millis() - tm < 5000) {
                if (client.available()) {
                    char c = client.read();
                    Serial.print(c);
                }
            }
        }
 
        client.stop();
    }
}

Пояснения к коду

  • Очень часто бывает полезно обмениваться данными, например, с компьютером. В частности, для отладки работы устройства: можно, например, смотреть, какие значения принимают переменные.
  • В данном эксперименте мы знакомимся со стандартным объектом , который предназначен для работы с последовательным портом (UART) Arduino, и его методами (функциями, созданными для работы с данным объектом) , и , которые вызываются после точки, идущей за именем объекта:

    • чтобы обмениваться данными, нужно начать соединение, поэтому вызывается в

    • отправляет содержимое . Если мы хотим отправить текст, можно просто заключить его в пару двойных кавычек: . Кириллица, скорее всего, будет отображаться некорректно.
    • делает то же самое, только добавляет в конце невидимый символ новой строки.
  • В и можно использовать второй необязательный параметр: выбор системы счисления, в которой выводить число (это может быть , , , для десятичной, двоичной, шестнадцатеричной и восьмеричной систем счисления соответственно) или количество знаков после запятой для дробных чисел.
Популярные статьи  Можно и правильно ли вешать электрощиток низко в квартире?

Например,

Serial.println(18,BIN);
Serial.print(3.14159,3);

в мониторе порта даст результат

10010
3.142
  • Монитор порта, входящий в Arduino IDE, открывается через меню Сервис или сочетанием клавиш Ctrl+Shift+M. Следите за тем, чтобы в мониторе и в скетче была указана одинаковая скорость обмена данными, . Скорости 9600 бит в секунду обычно достаточно. Другие стандартные значения можете посмотреть в выпадающем меню справа внизу окна монитора порта.
  • Вам не удастся использовать цифровые порты 0 и 1 одновременно с передачей данных по последовательному порту, потому что по ним также идет передача данных, как и через USB-порт платы.
  • При запуске монитора порта скетч в микроконтроллере перезагружается и начинает работать с начала. Это удобно, если вам нельзя упустить какие-то данные, которые начинаю передаваться сразу же. Но в других ситуациях это может мешать, помните об этом нюансе!
  • Если вы хотите читать какие-то данные в реальном времени, не забывайте делать хотя бы на 100 миллисекунд, иначе бегущие числа в мониторе будет невозможно разобрать. Вы можете отправлять данные и без задержки, а затем, к примеру, скопировать их для обработки в стороннем приложении.
  • Последовательность выводится как символ табуляции (8 пробелов с выравниванием). Также вы можете использовать, например, последовательность для перевода строки. Если вы хотите использовать обратный слеш, его нужно экранировать вторым таким же: .

Подключение датчика к микроконтроллеру Arduino

От измерительного устройства к Arduino поступает цифровой сигнал, передающий сразу обе величины (температуру и влажность).

Передача данных от датчика к микроконтроллеру имеет такую последовательность:

  • От микроконтроллера Arduino к датчику поступает запрос путем смены сигнала с 0 на 1;
  • Получив запрос, DHT11 выдает Arduino информацию посредством изменения битовой кодировки;
  • При согласовании запроса и ответа от DHT11 на Arduino поступает отчет в размере 5 байт о состоянии температуры и влажности.

В передаваемом отчете из 5 байт первые два содержат информацию об уровне температуры, вторые два о влажности, а пятый представляет собой контрольную сумму уровня температуры и влажности во избежание ошибки измерений. Так как передача данных от DHT11 имеет свои особенности, для корректировки его взаимодействия с микроконтроллером были внесены изменения в программу. Для этого через компьютер или ноутбук необходимо записать на Arduino следующую программу:

Ниже представлена принципиальная схема самодельной метеостанции на основе датчика DHT11 и микроконтроллера Arduino.

Метеостанция на ардуино своими рукамиРисунок 3: Принципиальная схема метеостанции на Ардуино

Вышеприведенная схема метеостанции, которую вы можете собрать своими руками, будет отображать на мониторе информацию о температуре и влажности. Но с датчиком DHT11 на мониторе будет отображаться только целое число, а дробное значение обнуляется. В принципе, десятичные данные температуры и влажности для него совершенно неактуальны из-за низкой точности измерений

Но, если в вашей ситуации важно знать точную величину с определенным количеством знаков после запятой, датчик DHT11 придется заменить на более совершенный DHT22

Следует отметить, что предложенная выше программа уже включает в себя возможность получения значения с дробной частью. Поэтому если возможности вашего монитора ограничены или вы не хотите загромождать его лишними нулями после запятой при использовании  датчика DHT11, вам придется немного изменить предложенную программу, дополнив ее функцией плавающей точки – dtostrf.

Что ещё можно сделать?

  1. Мы установили только сенсор температуры и влажности. Но у Teensy остаётся ещё много свободных ножек, т.ч. можно добавить разных датчиков: освещённости, атмосферного давления, скорости ветра и т.д.
  2. Teensy прямо на борту имеет часы реального времени (RTC). Для их работоспособности не хватает только кварца. Можно купить кварц на 32,768 КГц в любом магазине радиоэлементов и припаять его. Тогда можно пробуждать Teensy по будильнику RTC. Достоинство в том, что можно будить устройство чаще в те часы, когда нужны более точные показания. Например, в рабочее время будить устройство каждые 5 минут, а в остальное — каждые полчаса.

Метеостанция на Ардуино с блютуз

Для этого проекта нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • Bluetooth модуль HC-05/HC-06;
  • датчик LM35 или DHT11;
  • смартфон с ОС Andrioid;
  • макетная плата;
  • провода «папа-папа», «папа-мама».
Популярные статьи  Защита от сверхтока: что это такое, требования, особенности

Схема блютуз метеостанции на Ардуино своими руками

В данном проекте мы представим два варианта скетча для метеостанции — с датчиком DHT11 и с датчиком температуры LM35. Приложение на смартфоне подходит к двум вариантам.  После прошивки модуля, соберите домашнюю метеостанцию, как на схеме выше и загрузите скетч. Оба скетча с приложением для смартфона и всеми необходимыми библиотеками можно скачать одним архивом здесь.

Скетч для метеостанции на Ардуино с DHT11

#include <SoftwareSerial.h>    //  подключение библиотеки SoftwareSerial.h
SoftwareSerial mySerial(2, 3); // указываем пины rx и tx соответственно

#include "DHT.h"   // подключаем библиотеку для датчика
DHT dht(8, DHT11); // сообщаем на каком порту будет датчик

String stringT = String("*");
String stringH = String("%");

void setup() {
  Serial.begin(9600);   // запуск аппаратного последовательного порта
  mySerial.begin(9600); // запуск программного последовательного порта
  dht.begin();          // запуск датчика DHT11
}

void loop() {
  float h = dht.readHumidity();    // считываем значение температуры
  float t = dht.readTemperature(); // считываем значение влажности

  Serial.println(t + stringT);   // отправляем значение температуры на монитор
  Serial.println(h + stringH);   // отправляем значение влажности на монитор
  Serial.println("");
  mySerial.println(t + stringT); // отправляем значение температуры на телефон
  mySerial.println(h + stringH); // отправляем значение влажности на телефон

  delay(10000); // ставим задержку на 10 секунд
}

Пояснения к коду:

  1. массивы и нужны в этом скетче, чтобы приложение на телефоне считывало данные с нужным символом в соответствующей строке;
  2. блютуз модуль HC-05/06 работает на частоте 9600 бит/сек — .

Приложение для метеостанция на смартфоне Андроид

После загрузки скетча, скачайте и установите на своем телефоне приложение dht11.apk — снимки экрана размещены на картинке выше. Выполните сопряжение смартфона и блютуз модуля, согласно этой статьи — Подключение блютуз модуля и запустите приложение. Далее вам необходимо подключиться к блютуз метеостанции, нажав на кнопку «Подключиться» и дождаться обновления данных с датчика DHT11.

Виды датчиков

Для измерения параметров среды часто применяют три вида сенсоров:

  • DHT11;
  • DHT22;
  • SHT1x.

Плюс первого — дешевизна, скорость работы и стабильность сигнала. Из минусов отметим сравнительно слабую программную реализацию библиотеки, высокую погрешность выполняемых измерений и не всегда подходящий диапазон рабочих температур. DHT22 выгодно отличается благодаря:

  • малым погрешностям;
  • высокой дальности сигнала;
  • поддержке дробных значений.

Как и первый сенсор, DHT22 не работает без подгруженной библиотеки. Кроме того, для профессиональных задач его чувствительность и скорость реакции может стать недостаточной.

Датчики линейки SHT1x быстро срабатывают, имеют весьма низкую погрешность, экономичны и умеют «засыпать» при долгой неактивности. Из недостатков выделим:

  • два цифровых интерфейса;
  • невозможность работы без подключения программной библиотеки и диапазон от 0 до 50 градусов — как в других образцах. Его хватает не всегда.

По стоимости все три варианта примерно одинаковы. Для «домашних» установок чаще берут DHT11-22 за их сравнительную простоту в эксплуатации и настройке.

Шаг первый. Подключаем термистор

У меня самый простой термистор: если его нагреть, сопротивление уменьшится, если охладить — вырастет. Такие элементы называют термисторами с отрицательным температурным коэффициентом или NТС (от английских слов Negative Temperature Coefficent).

К сожалению, на Ардуино нет встроенных инструментов для измерения сопротивления, поэтому будем выкручиваться. В эксперименте с батарейками мы использовали делитель напряжения: пара сопротивлений помогла снизить напряжение вдвое. Использую ту же схему, только одно сопротивление заменю термистором.

Метеостанция на ардуино своими руками

При комнатной температуре, 25 по Цельсию, его сопротивление равно 10 килоомам — столько же, сколько и у постоянного резистора. Теперь выходное напряжение цепи зависит только от сопротивления термистора. Измерю напряжение, подключив цепь к контакту А5.

Метеостанция на ардуино своими руками

Теперь я знаю всё, что нужно для определения сопротивления термистора. Воспользуюсь общей формулой делителя напряжения, чтобы найти сопротивление моего термистора.

Метеостанция на ардуино своими руками

Чтобы не возиться с подключением экрана раньше времени — вдруг мой сенсор не заработает — выведу показания с платы на экран компьютера. Передам данные по USB, с помощью интерфейса последовательного порта. Запищу передачу командой Serial.begin. Текст сообщений буду составлять с помощью функций Serial.print и Serial.println. Первая просто добавляет данные к текущей строке, вторая — сначала добавляет данные, затем заканчивает строку. Загружу в Ардуинку первую программу.

Программа загрузилась, но ничего не происходит. Чтобы увидеть данные, нужно запустить монитор последовательного порта.

Метеостанция на ардуино своими руками

Это можно сделать в верхнем меню редактора кода (монитор порта находится во вкладке инструменты) или с помощью комбинации клавиш Ctrl+Shift+M.

Метеостанция на ардуино своими руками

При комнатной температуре у меня получилось, что напряжение срезалось вдвое. Это подтверждает, что мой термистор сейчас имеет сопротивление 10 кОм.

Что это такое?

Наша метеостанция будет состоять из двух устройств: компактного автономного
устройства, измеряющего погодные показатели, и устройства-ретранслятора,
получающего эти показатели и отправляющего их на «народный мониторинг».
Устройства будут связываться по беспроводному каналу связи на частоте 433 МГц.
Автономная часть будет питаться от трёх пальчиковых батареек и сможет
просуществовать на одном комплекте батарей до года при периоде опроса датчиков
в 20 мин.

Такая конструкция позволяет не сверлить стены для прокладки проводов с улицы, где необходимо производить измерения, в помещение, где результатами этих
измерений надо пользоваться.

Печатные платы.

Печатные платы разработаны в программе Dip Trace. Они выполнены на одностороннем фольгированном стеклотекстолите. Расположение деталей на основной печатной плате показано на рисунке (Рисунок 4). На рисунке перемычки со стороны монтажа выделены цветными ломаными линиями. Печатная плата со стороны дорожек показана на рисунке (Рисунок 5).

Метеостанция на ардуино своими руками

Рисунок 4. Печатная плата (вид со стороны радиодеталей).

Метеостанция на ардуино своими руками

Рисунок 5. Печатная плата (вид снизу, зеркальное отображение).

Кнопки и переключатели пульта управления станцией установлены на отдельной печатной плате (Рисунок 6 и Рисунок 7).

Метеостанция на ардуино своими руками

Рисунок 6. Печатная плата Пульта управления (вид сверху).

Метеостанция на ардуино своими руками

Рисунок 7. Печатная плата Пульта управления (вид со стороны дорожек).

Гнездо для подключения USB кабеля установлено на отдельной плате, купленной на AliExpress (Рисунок 8).

Рисунок 8. Плата с гнездом USB.

Добавить комментарий