Полупроводниковые диоды: виды и характеристики

Диоды иностранных производителей

Диод Шоттки

Похожий принцип с некоторыми отличиями используется в системе маркировки диодов импортного образца. Отличают три стандарта:

  1. JEDEC – американский. Каждый диод представлен в виде набора обозначений в виде 1NXY, где X – это серийный номер, а Y – модификация. Первые два символа есть у всех приборов, поэтому в цветовой маркировке их не учитывают. Каждой цифре или литере соответствует свой цвет, согласно таблице.
  2. PRO-ELECTRON – европейский. Две буквы в начале – материал и подкатегория диода. Серийный номер может иметь вид значения от 100 до 999 (бытовые приборы) либо с добавлением литер (Z10-A99), подразумевающих промышленное применение. Каждое из значений кодируется в цветовой элемент.
  3. JIS – японский. Заметно отличается от предыдущих – в начале указывается функциональный тип: фотодиод, обычный диод, транзистор или тиристор. Затем идет S – обозначение полупроводника; следующая литера – тип прибора внутри категории, затем серийный номер и буква модификации (одна или две).

Полупроводниковые диоды: виды и характеристики
Цветовая маркировка по зарубежным системам

Запомнить все сочетания практически невозможно. Если усвоить хотя бы основные соответствия, разобраться в назначении диода удастся гораздо быстрее.

О важном свойстве

ВАХ полупроводникового элемента

Самым важным параметром в характеристике полупроводниковых диодных компонентов электрических систем является ВАХ. Как уже говорилось выше, под ВАХ понимается вольт амперная характеристика диода. Эта характеристика определяет зависимость тока, проходящего через p-n переход, к полярности, а также величине приложенного к нему напряжения. Данная зависимость имеет вид кривой, представленной на рисунке снизу.

Рисунок изображает ВАХ для обратного и прямого типа включения. Эта характеристика используется для создания эффективных электрических схем, предназначенных для самых разнообразных целей.

Прямое и обратное напряжение

Полупроводниковые диоды: виды и характеристики

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Маркировка диодов

Проще всего маркируются диоды в металлическом корпусе. В большинстве случаев на них наносится обозначение прибора и его цоколевка. Диоды в пластиковом корпусе маркируются кольцевой меткой со стороны катода. Но нет гарантии, что производитель строго соблюдает это правило, поэтому лучше обратиться к справочнику. Ещё лучше прозвонить прибор мультиметром.

Отечественные стабилитроны малой мощности и некоторые другие приборы могут иметь метки из двух колец или точек разного цвета на противоположных сторонах корпуса. Чтобы определить тип подобного диода и его цоколевку, надо взять справочник или найти в интернете онлайн-определитель маркировки.

Области применения диодов

Современные производители предлагают широкий ассортимент диодов, адаптированных для конкретных областей применения.

Выпрямительные диоды

Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении. В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока. По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.

  • Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
  • Диоды средней мощности могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
  • Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.

Диодные детекторы

Такие устройства получают комбинацией в схеме диодов с конденсаторами. Они предназначены для выделения низких частот из модулированных сигналов. Присутствуют в большинстве аппаратов бытового применения – радиоприемниках и телевизорах. В качестве детекторов излучения используются фотодиоды, преобразующие свет, попадающий на светочувствительную область, в электрический сигнал.

Ограничительные устройства

Защиту от перегруза обеспечивает цепочка из нескольких диодов, которые подключают к питающим шинам в обратном направлении. При соблюдении стандартного рабочего режима все диоды закрыты. Однако при выходе напряжения сверх допустимого назначения срабатывает один из защитных элементов.

Диодные переключатели

Переключатели, представляющие собой комбинацию диодов, которые применяются для мгновенного изменения высокочастотных сигналов. Такая система управляется постоянным электрическим током. Высокочастотный и управляющие сигналы разделяют с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Эффективную искрозащиту создают с помощью комбинирования шунт-диодного барьера, ограничивающего напряжение, с токоограничительными резисторами.

Параметрические диоды

Используются в параметрических усилителях, которые являются подвидом резонансных регенеративных усилителей. Принцип работы основан на физическом эффекте, который заключается в том, что при поступлении на нелинейную емкость разночастотных сигналов часть мощности одного сигнала можно направить на рост мощности другого сигнала. Элементом, предназначенным для содержания нелинейной емкости, и является параметрический диод.

Смесительные диоды

Смесительные устройства используются для трансформации сверхвысокочастотных сигналов в сигналы промежуточной частоты. Трансформация сигналов осуществляется, благодаря нелинейности параметров смесительного диода. В качестве смесительных СВЧ-диодов используются приборы с барьером Шоттки, варикапы, обращенные диоды, диоды Мотта.

Умножительные диоды

Эти СВЧ устройства используются в умножителях частоты. Они могут работать в дециметровом, сантиметровом, миллиметровом диапазонах длин волн. Как правило, в качестве умножительных приборов используются кремниевые и арсенид-галлиевые устройства, часто – с эффектом Шоттки.

Настроечные диоды

Принцип работы настроечных диодов основан на зависимости барьерной емкости p-n перехода от величины обратного напряжения. В качестве настроечных используются приборы кремниевые и арсенид-галлиевые. Эти детали применяют в устройствах перестройки частоты в сверхчастотном диапазоне.

Генераторные диоды

Для генерации сигналов в сверхвысокочастотном диапазоне востребованы устройства двух основных типов – лавинно-пролетные и диоды Ганна. Некоторые генераторные диоды при условии включения в определенном режиме могут выполнять функции умножительных устройств.

Интересные факты.

Светодиодная лента.

Получение белого цвета. Есть три варианта. Первый – по технологии RGB. Включение всех трех цветов на 100% дает белый цвет. Во втором случае на линзу наносят три люминофора: голубой, красный и зеленый. Третий вариант заключается в нанесении красного и зеленого люминофора на оптическую систему голубого светодиода.

Популярные статьи  Что делать, если соседи воруют электроэнергию?

Работа при повышенных температурах. С ростом температуры в области p-n-перехода уменьшается яркость свечения. Причем у красных и желтых падение яркости больше, чем у синих и зеленых. Поэтому нужно использовать хороший теплоотвод и не допускать эксплуатации led при повышенных температурах.

Как готовят полупроводники? В основном по технологии металлоорганической эпитаксии в атмосфере особо чистых газов. Выращиваются пленки толщиной от ангстремов до микрон. Разные слои легируются примесями, которые дадут слою высокую концентрацию электронов или дырок, то есть сформируют n или p структуру полупроводника. Зачем пленки травят, создают контакты к n и p слоям и делят на чипы нужных размеров.

Чем хороша СОВ-технология? Тем, что кристаллы монтируются на металлическую подложку, которая одновременно выполняет функции радиатора. Таким образом получают отличный теплоотвод непосредственно от полупроводникового кристалла. Дополнительно можно получить разную форму светодиода, разную гибкость и и.п.

Фотодиоды

Фотодиод — это полупроводниковые приборы, принцип действия которых основан на внутреннем фотоэффекте, состоящем в генерации под действием света электронно-дырочных пар в рп-переходе, в результате чего увеличивается концентрация основных и неосновных носителей заряда в его объеме. Обратный ток фотодиода определяется концентрацией неосновных носителей и, следовательно, интенсивностью облучения. Вольт-амперные характеристики фотодиода (рисунок 1.2.7.1 (см. стр.28)) показывает, что каждому значению светового потока Ф соответствует определенное значение обратного тока. Такой режим работы прибора называют фотодиодным.

Фотодиоды применяются в качестве датчиков освещенности.

Полупроводниковые диоды: виды и характеристики

U,пр,В 0,01 0,2
Iпр,мА 1 4,5

Лабораторная работа

Тема: Односторонняя проводимость полупроводникового диода

Цель опыт: продемонстрировать принципиальное различие характеристик р-п перехода в зависимости от полярности приложенного к нему напряжения.

Оборудование: лампа 12В 21Вт -источник постоянного тока, диод — модуль с клеммами для -цифровой амперметр подключения источника питания,ключ

Полупроводниковый диод – это полупроводниковый прибор с одним р-n переходом и двумя выводами. Металлические выводы привариваются или припаиваются к противоположным областям р-n перехода ,а вся система заключается в металлический ,металлокерамический ,стеклянный или пластмассовый корпус.

Если положительный полюс источника питания подключается к p- области ,а отрицательный к n – области ,то включение перехода называют прямым. При изменении указанной полярности включение p –n .Перехода называется обратным .По аналогии с Электровакууными диодами ту сторону полупроводникового диода, к которой при прямом включении присоединяется отрицательный полюс источника питания, называют катодом, а другую – анодом.

Для демонстрации особенностей протекания электрического тока через p-n переход , или ,что одно и тоже ,через полупроводниковый диод ,соберите электрическую цепь, представленную на рис 1, Диод включается в цепь в прямом направлении .Обратите на это внимание учащихся и напомните им ,как по условному обозначению полупроводникового диода определить ,где у него анод ,а где катод. Установите выходное напряжение источника питания равным 10 В и замкните ключ

Лампа при этом начнет светится ,а амперметр покажет наличие тока в цепи. Попросите учащихся на какой из электродов диода подается положительный потенциал ,а на какой –отрицательный ,и в каком направлении протекает ток в цепи. Сделайте вывод о проводимости диода при данном подключении к источнику и объясните результат опыта на основе механизма протекания тока через p-n переход

Установите выходное напряжение источника питания равным 10 В и замкните ключ. Лампа при этом начнет светится ,а амперметр покажет наличие тока в цепи. Попросите учащихся на какой из электродов диода подается положительный потенциал ,а на какой –отрицательный ,и в каком направлении протекает ток в цепи. Сделайте вывод о проводимости диода при данном подключении к источнику и объясните результат опыта на основе механизма протекания тока через p-n переход.

Измените полярность включения диода на противоположную .Замкните ключ и продемонстрируйте, что лампа в этом случае не горит ,а амперметр показывает отсутствие тока в цепи. В место цифрового амперметра включите в цепь миллиамперметр .При этом чувствительность прибора , измеряющего ток в цепи ,увеличится в 100 раз, однако результат опыта останется прежним- ток в цепи нет. Объясните отсутствие тока в цепи на оcнове свойств p-n перехода. Сделайте общий вывод о том ,как влияет полярность подключения диода на его способность проводить электрический ток.

В заключение хочется сказать:

  1. Свойства диода изучено.
  2. Применение диода изучено.
  3. Поставленная цель выполнена.

Литература

  1. Виноградов Ю.В. «Основы электронной и полупроводниковой техники». Изд. 2-е, доп. М., «Энергия», 1972 г.
  2. Журнал «Радио», номер 12, 1978 г.
  3. Терещук Р.М. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя / 4-е издание, стер. — Киев: Наук. Думка 1989.
  4. Бочаров Л.Н. Полевые транзисторы. — М.: Радио и связь, 1984.
  5. Полупроводниковые приборы: транзисторы: Справочник / Н.Н.Горюнова. М.; Энергоатомиздат, 1985.
  6. Справочник «Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы»; М.: Энергоатомиздат, 1987г.

Вольт-амперная характеристика полупроводникового диода

Вольт-амперная характеристика полупроводникового диода состоит из прямой и обратной ветви. Расположены они в I и в III квадрантах, так как направление тока и напряжения через диод всегда совпадают. По вольт-амперной характеристике можно определить некоторые параметры, а также наглядно увидеть, на что влияют характеристики прибора.

Полупроводниковые диоды: виды и характеристики

Напряжение порога проводимости

Если к диоду приложить прямое напряжение и начать его увеличивать, то в первый момент ничего не произойдет – ток расти не будет. Но при определенном значении диод откроется, и ток будет увеличиваться в соответствии с напряжением. Это напряжение называется напряжением порога проводимости и на ВАХ отмечено, как Uпорога. Оно зависит от материала, из которого изготовлен диод. Для самых распространенных полупроводников этот параметр составляет:

  • кремний – 0,6-0,8 В;
  • германий – 0,2-0,3 В;
  • арсенид галлия – 1,5 В.

Свойство германиевых полупроводниковых приборов открываться при малом напряжении используется при работе в низковольтных схемах и в других ситуациях.

Максимальный ток через диод при прямом включении

После того, как диод открылся, его ток растет вместе с увеличением прямого напряжения. Для идеального диода этот график уходит в бесконечность. На практике этот параметр ограничен способностью полупроводникового прибора рассеивать тепло. При достижении определенного предела диод перегреется и выйдет из строя. Чтобы этого избежать, производители указывают наибольший допустимый ток (на ВАХ – Imax). Его можно приблизительно определить по размеру диода и его корпусу. В порядке убывания:

  • наибольший ток держат приборы в металлической оболочке;
  • на среднюю мощность рассчитаны пластиковые корпуса;
  • диоды в стеклянных оболочках используются в слаботочных цепях.

Металлические приборы можно устанавливать на радиаторах – это увеличит мощность рассеяния.

Обратный ток утечки

Если приложить к диоду обратное напряжение, то малочувствительный амперметр ничего не покажет. На самом деле только идеальный диод не пропускает никакого тока. У реального прибора ток будет, но он очень мал, и называется обратным током утечки (на ВАХ – Iобр). Он составляет десятки микроампер или десятые доли миллиампер и намного меньше прямого тока. Определить его можно по справочнику.

Популярные статьи  Электроустановка здания: что это такое, определение, особенности, устройство

Напряжение пробоя

При определенном значении обратного напряжения возникает резкий рост тока, называемый пробоем. Он носит туннельный или лавинный характер и является обратимым. Этот режим используется для стабилизации напряжения (лавинный) или для генерации импульсов (туннельный). При дальнейшем увеличении напряжения пробой становится тепловым. Этот режим необратим и диод выходит из строя.

Паразитическая ёмкость pn-перехода

Уже упоминалось, что p-n переход обладает электрической ёмкостью. И если в варикапах это свойство полезно и используется, то в обычных диодах оно может быть вредным. Хотя ёмкость составляет единицы или десятки пФ и на постоянном токе или низких частотах незаметна, с повышением частоты её влияние возрастает. Несколько пикофарад на ВЧ создадут достаточно низкое сопротивление для паразитных утечек сигнала, сложатся с существующей ёмкостью и изменят параметры цепи, а совместно с индуктивностью вывода или печатного проводника образуют контур с паразитным резонансом. Поэтому при производстве высокочастотных приборов принимают меры для снижения ёмкости перехода.

Сферы применения и назначение

Сферы применения полупроводниковых диодов очень обширны. Сегодня без них тяжело представить работу большинства электрических приборов, и это неудивительно. Элементы задействуются для изготовления диодных мостов, а также следующих приспособлений:

  1. Устройств для защиты приборов от неверной полярности или перегрузок.
  2. Переключателей.
  3. Систем диодной искрозащиты.

Полупроводниковые диоды: виды и характеристикиЧто касается диодных мостов, то они представляют собой устройство из четырех, шести или двенадцати соединенных диодов (точное количество диодов определяется типом схемы, которая бывает 1-фазной, 3-фазной полумостовой или 3-фазной полномостовой). Система используется в качестве выпрямителя и зачастую устанавливается в генераторах автомобилей. Дело в том, что применение такого моста позволило существенно уменьшить устройство и сделать его более надежным.

Диодные детекторы состоят из диодов и конденсаторов, что позволяет осуществлять модуляцию с низкими частотами из разных сигналов, включая амплитудно-модулированный радиосигнал. Устройства незаменимы для функционирования различных бытовых приборов, например, телевизор или радиоприемник. Также с помощью полупроводниковых диодов можно обеспечить полноценную защиту от нарушения полярности при запуске съемных входов и перегрузках.

Задача переключателей на основе диодов заключается в коммутации высокочастотных сигналов. Для управления схемой используется постоянный электроток, разделение частот и подача сигнала к конденсаторам. Также на основе диодов создается мощная искрозащита, предотвращающая перегрузки и отклонения от допустимого предела напряжения.

Вольт-амперная характеристика

Диод характеризуется вольт-амперной кривой, которую можно разделить на 2 ветви: прямую и обратную. В обратном направлении ток утечки близок к 0, но с ростом напряжения он медленно увеличивается и при достижении напряжения пробоя начинает резко возрастать. В прямом направлении ток быстро нарастает с увеличением приложенного напряжения выше порога проводимости, который составляет 0,7 В для диодов из кремния и 0,4 В из германия. Элементы, в которых используются другие материалы, имеют другие вольт-амперные характеристики и напряжения порога проводимости и пробоя.

Диод c р-n-переходом можно рассматривать как устройство базового уровня. Он широко используется во многих приложениях – от сигнальных цепей и детекторов до ограничителей или подавителей переходных процессов в индукционных или релейных катушках и выпрямителей высокой мощности.

Полупроводниковые диоды: виды и характеристики

Общая классификация

Диоды делятся на большие группы – неполупроводниковые и полупроводниковые.

Неполупроводниковые

Одной из наиболее давних разновидностей являются ламповые (электровакуумные) диоды

. Они представляют собой радиолампы с двумя электродами, один из которых нагревается нитью накала. В открытом состоянии с поверхности нагреваемого катода заряды движутся к аноду. При противоположном направлении поля прибор переходит в закрытую позицию и ток практически не пропускает.

Еще одни вид неполупроводниковых приборов – газонаполненные

, из которых сегодня используются только модели с дуговым разрядом. Газотроны (приборы с термокатодами) наполняются инертными газами, ртутными парами или парами других металлов. Специальные оксидные аноды, используемые в газонаполненных диодах, способны выдерживать высокие нагрузки по току.

Полупроводниковые

В основе полупроводниковых приборов лежит принцип p-n перехода. Существует два типа полупроводников – p-типа и n-типа. Для полупроводников p-типа характерен избыток положительных зарядов, n-типа – избыток отрицательных зарядов (электронов). Если полупроводники этих двух типов находятся рядом, то возле разделяющей их границы располагаются две узкие заряженные области, которые называются p-n переходом. Такой прибор с двумя типами полупроводников с разной примесной проводимостью (или полупроводника и металла) и p-n-переходом называется полупроводниковым диодом

. Именно полупроводниковые диодные устройства наиболее востребованы в современных аппаратах различного назначения. Для разных областей применения разработано множество модификаций таких приборов.

Полупроводниковые диоды: виды и характеристики

Полупроводниковые диоды

Использование

Полупроводниковый диод, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «П. д.» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов. В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n-перехода). Если к р—n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область — течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.

На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 а и максимальное допустимое обратное напряжение U*обр от 20—30 в до 1—2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными.

При напряжениях, превышающих U*o6p, ток резко возрастает, и возникает необратимый (тепловой) пробой р—n-перехода, приводящий к выходу П. д. из строя. С целью повышения U*обр до нескольких десятков кв используют выпрямительные столбы, в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок составляет > 10-5—10-4 сек, ограничивает частотный предел их применения (обычно областью частот 50—2000 гц). Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10-7—10-10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами, главным образом в слаботочных сигнальных цепях ЭВМ.

Популярные статьи  Освещение в гостиной (50 фото идей): нормы, выбор типа светильника, варианты

Будет интересно Как расшифровать цветовую маркировку транзисторов?

Полупроводниковые диоды: виды и характеристики

Чему равен ток насыщения диода

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

Полупроводниковые диоды: виды и характеристики

обратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Работа диода и его вольт-амперная характеристика

Полупроводниковые диоды: виды и характеристики

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

2.2. Выпрямительные диоды

Выпрямительными обычно называют диоды, предназначенные для преобразования переменного напряжения промышленной частоты (50 или 400 Гц) в постоянное. Основой диода является обычный p-n переход. В практических случаях p-n переход диода имеет достаточную площадь для того, чтобы обеспечить большой прямой ток. Для получения больших обратных (пробивных) напряжений диод обычно выполняется из высокоомного материала.

Основными параметрами, характеризующими выпрямительные диоды, являются (рисунок 2.1):

Полупроводниковые диоды: виды и характеристики

Рисунок 2.1

Выпрямительные диоды обычно подразделяются на диоды малой, средней и большой мощности, рассчитанные на выпрямленный ток до 0.3, от 0,3 до 10 и свыше 10 А соответственно.

Для работы на высоких напряжениях (до 1500 В) предназначены выпрямительные столбы, представляющие собой последовательно соединенные p-n переходы, конструктивно объединенные в одном корпусе. Выпускаются также выпрямительные матрицы и блоки, имеющие в одном корпусе по четыре или восемь диодов, соединенные по мостовой схеме выпрямителя и имеющие Iпр max до 1 А и Uo6p max до 600 В.

При протекании больших прямых токов Iпр и определенном падении напряжения на диоде Uпp B нем выделяется большая мощность. Для отвода данной мощности диод должен иметь большие размеры p-n перехода, корпуса и выводов. Для улучшения теплоотвода используются радиаторы или различные способы принудительного охлаждения (воздушное или даже водяное).

Среди выпрямительных диодов следует выделить особо диод с барьером Шотки. Этот диод характеризуется высоким быстродействием и малым падением напряжения (Uпp < 0,6 В). К недостаткам диода следует отнести малое пробивное напряжение и большие обратные токи.

SMD-диоды

Цветовая температура светодиодных ламп

Особенность SMD-диодов, монтирующихся прямо на поверхность плат, – невозможность полноценной маркировки из-за небольших размеров. Отсюда – своеобразная система идентификации. Несколько способов различить такие диоды:

Обратить внимание на форму исполнения корпуса. У каждого типа есть характерный внешний вид, например, электролитические конденсаторы цилиндрические, керамические – в форме параллелепипеда.
Свериться с таблицей типоразмеров

Обычно это четыре цифры, которые обозначают габариты резистора в дюймах.

Для каждого типа корпуса и назначения предусмотрена своя система обозначений, что делает расшифровку неудобной.

Полупроводниковые диоды: виды и характеристики
SMD-диоды – маркировка отличается в зависимости от корпуса

Полярность SMD-диода

Малый размер также не позволяет разместить привычные различимые обозначения полярностей. При определении катода руководствуются следующим:

  • маркировка в виде цветных колец наносится на его сторону;
  • некоторые корпуса без цветовых символов имеют паз на стороне катода;
  • если на корпусе изображен треугольник, его вершина указывает на отрицательный полюс.

Это помогает избежать путаницы. Чаще всего во всех системах маркировки символы наносят на сторону катода, это справедливо и для SMD-элементов.

Добавить комментарий