Рабочий процесс изготовления каркасов катушек
Схема намотки сварочного трансформатора.
Изготовляют их из картона. Внутренняя часть должна иметь размеры чуть больше, чем стержень сердечника, а щечки должны свободно входить в окно трансформатора. При использовании О-образного сердечника надо сделать две катушки, а при применении Ш-образных пластин — одну.
При применении круглого сердечника от ЛАТРА его предварительно обматывают ленточной изоляцией и затем прямо начинают мотать на него провод, распределяя нужное количество витков по всему кольцу. После того как закончена намотка первичной обмотки, ее закрывают 3-4 слоями лакоткани и затем сверху начинают накручивать витки вторичной ее части. После этого ленточной изоляцией закрывают провод, предварительно выведя наружу концы обмоток. При использовании обычных магнитопроводов каркас катушек делают так:
- делается выкройка гильзы с отворотами на сторонах торцов;
- из картона вырезают щечки;
- свертывают тело катушки по намеченным линиям в небольшую коробочку и заклеивают;
- надевают на гильзу верхние части (щечки) и, отогнув отвороты, приклеивают.
Это интересно: Трансформаторы для галогенных ламп: разбираемся во всех нюансах
Конструкция и принцип работы
Обязательными элементами практически любого устройства преобразования напряжения являются изолированные обмотки, формированные из проволоки или ленты. Они располагаются на магнитопроводе, представленном сердечником из ферромагнитного материала. Связь между катушками осуществляется при помощи магнитного потока. В случае работы с высокочастотными токами (100 и более кГц) сердечник отсутствует.
Принцип работы трансформатора
В принципе работы трансформатора сочетаются основные постулаты электромагнетизма и электромагнитной индукции. Его можно рассмотреть на примере простейшего прибора с двумя катушками и стальным сердечником. Подача переменного напряжения на первичную обмотку приводит к возникновение магнитного потока в магнитопроводе, после чего во вторичной и первичной обмотке возникает ЭДС индукции, если подключить нагрузку ко вторичной обмотке то потечёт ток. Частота напряжения на выходе остаётся неизменной, а его величина зависит от соотношения витков катушек.
Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).
- U1 и U2 – напряжение в первичной и вторичной обмотки,
- N1 и N2 – количество витков в первичной и вторичной обмотке,
- I1 и I2 – ток в первичной и вторичной обмотки.
Создание обмоток для увеличивающего трансформатора
Следует надеть катушку на брусок из натурального массива. В нём необходимо просверлить специальное отверстие для прутка намоточного.
К одному из серьёзных этапов относится подключение тока. Деталь вставляется внутрь станка и можно производить обмотку:
- Сверху катушки наматывается лакоткань в несколько слоёв.
- Конец имеющегося провода закрепляется на обустроенной щёчке, после чего можно приступать к вращению ручку.
- Витки укладываются максимально плотно.
- После обмотки следует обрезать провод для последующего закрепления сверху щёчки возле первого.
- На имеющиеся выводы необходимо закрепить трубку изоляционную.
Изоляция слоев
Чтобы намотать ферритовый трансформатор или другую разновидность приборов, необходимо изучить еще один нюанс. Между определенными слоями проводников следует устанавливать изоляционные материалы. Чаще всего для этого применяется конденсатная или кабельная бумага. Все необходимые материалы можно приобрести в специализированных магазинах. Бумага должна обладать достаточной плотностью, быть ровной без просветов или отверстий.
Между отдельными катушками изоляционные слои создаются из более прочных материалов. Чаще всего применяется лакоткань. Ее с обеих сторон обкладывают бумагой. Это необходимо еще и для выравнивания поверхности перед проведением намотки. Если лакоткань найти не удалось, вместо нее можно использовать сложенную в несколько слоев бумагу.
Бумагу режут на полоски, ширина которых должна быть больше, чем контур. Они должны выходить за края обмотки на 3-4 мм. Лишний материал будет подворачиваться вверх. Это позволит хорошо защитить края катушки.
Выбор инструментов
Чтобы сделать намотку для трансформатора максимально правильно, следует приобрести нужные для работы приспособления:
Часто для подобных целей применяют колодку из натурального массива, в которой делают отверстие для необходимой оси, а также подгоняют под требуемые каркасные размеры. Легче сделать всё это посредством дрели.
Её следует укрепить таким образом, чтобы размещение было параллельно настольной поверхности, в патрон вставляется непосредственно прут, на который заблаговременно нужно надеть колодку с трансформаторным каркасом. Желательно выбрать прут, который имеет резьбу. В данном варианте колодка просто фиксируется посредством гаек.
Также к элементу, без которого невозможно составить схему для собственноручного создания трансформатора, считается приспособление для размотки. Как правило, подобного типа устройства функционируют, как и приспособления для размотки, разница состоит в том, что в этом варианте можно не использовать ручку вращения.
Чтобы определиться с количеством требуемых витков, потребуется специальный прибор, к примеру, водяной счётчик. Для бесперебойной работы прибора необходимо соединить его со станком наматывающего типа посредством гибкого валика. При отсутствии данного приспособления можно подсчитать витки в уме.
- Правильный выбор трансформатора тока по госту
- Трансформаторы: разновидности, схемы обмотки
- Основные параметры и характеристики трансформаторов, способы их определения
- Группы соединения трансформаторов
- Трансформаторы тока и напряжения
- Расчет сопротивления резистора для светодиодов: онлайн-калькулятор
- Что такое дроссель и для чего он нужен?
- Как пользоваться мультиметром правильно
- Electronic transformer
- Схема участка электрической цепи
- Как измерить сопротивление петли фаза-ноль?
- Расчет резистора для светодиода: как подобрать токоограничивающий элемент
- Узо в электрике
- Защита от перенапряжения: обзор доступных вариантов и эффективных устройств (90 фото)
- Расчет сопротивления параллельного соединения резисторов
- Две схемы реле времени с задержкой выключения на 220в
- Сечение кабеля по току
- Стабилизатор напряжения
- Особенности обозначение фазы и нуля
- Как проверить основные параметры аккумулятора мультиметром
- Как проверить заземление
- Как работают импульсные преобразователи напряжения (27 схем)
- Регулируемый стабилизатор напряжения
- Как перевести амперы в ватты и обратно?
- Источники бесперебойного питания для отопительных котлов любого типа
С этим читают
- Правильный выбор трансформатора тока по госту
- Трансформаторы: разновидности, схемы обмотки
- Основные параметры и характеристики трансформаторов, способы их определения
- Группы соединения трансформаторов
- Трансформаторы тока и напряжения
- Расчет сопротивления резистора для светодиодов: онлайн-калькулятор
- Что такое дроссель и для чего он нужен?
- Как пользоваться мультиметром правильно
- Electronic transformer
- Схема участка электрической цепи
Испытание
Как только работа с намоткой подойдёт к концу, следует испытать созданный прибор. В этих целях к сети подключается обмотка первичная
Для грамотной проверки трансформатора на выявление возможных замыканий важно подключить к току лампу, а также обмотку последовательно.
Уровень изоляционной надёжности проверяется через касания поочерёдно выведенным проводным концом имеющегося конца обмотки сети. Если следовать предложенной схеме неуклонно, то трансформаторная намотка собственноручно не представит особых трудностей, а соответственно справиться с подобной задачей будет под силу даже неопытному мастеру.
Расчет провода
Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:
- Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
- Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.
Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.
Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:
I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А
- где I, I2, I3 – токи в соответствующих участках цепи, А;
- P – мощность, Вт;
- U1, U2 – напряжения первичной и вторичной цепи, В.
Диаметр провода рассчитываем по формуле:
d = 0,8 * √I = 1 мм.
Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².
Коэффициент трансформации ЛАТРа n вычисляем по формуле:
n = U1 / U2 = 220 / 127 = 1,73
Для дальнейшего расчета вычисляем расчетную мощность Pр:
Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт
где к – коэффициент, учитывающий КПД автотрансформатора.
Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:
S = √ Pр = √ 151,92 = 12,325 см²
W0 = m / S = 35 / 12,325 = 2,839
- где W0 – количество витков, приходящихся на 1 вольт;
- m – 50 для стержневого и 35 для тороидального магнитопроводов.
Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:
w = W0 * U
Получаем 360, 511, 624 и 710 витков.
Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.
Функционирование и принцип устройства
Чтобы понять, что такое трансформаторы, повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.
Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается.
Схема и принцип работы повышающего трансформатора.
Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В. Промышленные сети обеспечиваются до 380 В.
Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.
От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ. Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры.
Принцип работы сети трансформатора.
Рассматривая, как работает трансформатор, повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции.
Как работает конструкция повышающего трансформатора.
Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.
Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.
При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.
Испытание
Изучив процедуру, как намотать трансформатор, следует учесть еще несколько рекомендаций. Количество витков тонкого проводника может достигать несколько тысяч. В этом случае лучше использовать специальное счетное оборудование. Обмотку защищают сверху бумагой. Для толстого проводника наружная защита не требуется.
Далее производится испытание работы трансформатора. Его первичный контур подключается к сети. Последовательно к источнику питания подсоединяют лампу. Это позволит выявить короткое замыкание.
Чтобы оценить надежность изоляции, необходимо поочередно касаться выведенным проводником каждого выхода сетевых контуров
Процедуру проверки нужно выполнять очень осторожно. Следует исключить вероятность удара током
Рассмотрев пошаговую инструкцию намотки трансформатора, можно отремонтировать старый или создать новый прибор. При четком следовании всем ее пунктам удается создать надежный, долговечный агрегат.
Порядок проверки исправности
Для проверки исправности импульсного трансформатора используется аналоговый или цифровой мультиметр. Цифровое устройство обладает преимуществами, благодаря удобству применения. Его не нужно дополнительно подстраивать, достаточно убедиться в наличии питания и целостности проводов подключения.
Также читайте: Измерительный трансформатор напряжения
Аналоговый мультиметр настраивается следующим образом:
- выбирается режим эксплуатации переключением в область минимальной величины сопротивления при измерении;
- провода вставляются в контакты прибора и соприкасаются друг с другом;
- специальной подстройкой стрелка выставляется на ноль;
Если совместить стрелку с нулём не получается, это говорит о проблемах с элементами питания, нуждающимися в замене.
Если трансформатор является составной частью некоторого аппарата, желательно отделить этот элемент от остальной конструкции, чтобы исключить воздействие сопутствующих помех при диагностике.
Проверка с помощью осцилографа:
Неисправность прибора может объясняться следующими проблемами:
- повреждённым сердечником;
- подгоревшими соединениями;
- нарушением изоляции проводов, вызывающим короткое замыкание обмотки;
- разрывом провода.
Кроме инструментальных измерений, необходимо обращать внимание на внешний вид аппарата. О неисправности может свидетельствовать подгоревшая обмотка, следы гари и соответствующий запах
Выбор материала магнитопровода
Маломощный преобразователь можно сделать на броневом или стержневом магнитопроводе. В броневом стержни с прямоугольным сечением располагаются горизонтально. Это сравнительно сложная конструкция, поэтому используется редко. В стержневом магнитопроводе стержни располагаются вертикально, обмотки цилиндрические.
Для повышающего трансформатора лучше использовать Ш-образный ферритовый магнитопровод
Важно точно подобрать размеры (на стержне должно поместиться требуемое количество витков). Если сердечник нужно разобрать, чтобы сделать другой из полученных пластин, толщина пакета подбирается, базируясь на мощность
Пластины вставляют в катушку, стягивают при помощи шпилек и гаек.
Разметка
Разметка — первый этап, который проводится при наличии материалов и инструментов
Важно тщательное исследование, позволяющее определить технические характеристики
Можно выбрать и разметку при помощи программ — есть в бесплатном доступе такие в интернет. Но в таком случае начинающий радиолюбитель не сможет понять алгоритм расчета и научиться выполнять рамку самостоятельно, без использования компьютеризированного оборудования.
Как сделать вручную
Проверка прочности и особенностей закрепления проводится опытным путем. Берется катушка, точней ее образец, который будет не жалко выкинуть, на него накладываются 10 витков, которые будут использоваться для основного трансформатора.
Выбирается стержень с диаметром в четыре раза большим для проводов с толщиной от 0,96 миллиметров, в пять раз больше, если берутся провода до 1,56 миллиметров и в шесть раз толще, если толщина провода превышает 2,44 миллиметра. Это необходимо обязательно учитывать, подобранные инструкции есть в специальной технической литературе.
Отдельно следует рассчитывать то, что кроме определенного изгиба, который непременно образуется на первых нескольких слоях сильней, а после начнет закругляться, есть и сильное натяжение, и растяжение. Во время разметки каркаса учитывают, что кратность увеличивается в несколько раз. Например, для провода, который имеет толщину 1 миллиметров, радиус закругления будет около 5 миллиметров. Радиусы для любых по диаметру проводов также размещается в соответствующих таблицах.
Выбор класса
Проведение разметки по образцам позволяет избежать появления неплотных и неровных поверхностей в обмотке. Тонкий гетинакс используется, если требуется увеличить жесткость каркаса. Например, если мощность устройства составляет до 10 Вт, то размеры деталей маленьких будут составлять 0,5, средних — 0,7 до 1,5, а больших — от 1. Мощность до 100 Вт подразумевает использование 0,7 — 1, 2,0 — 4, 1 — 2 миллиметровых деталей соответственно. Для приборов с мощностными показателями от 100 до 500 Вт берутся до 1 до 2 мм для класса а, от 3 до 6 для б, от 1,5 до 3 для класса в.
Для последнего типа, с наибольшими показателями мощности, целесообразно увеличить радиус закругления путем приближения к оптимальным показателям значения округления. Лучше брать специальные вкладыши из материала, который используется для витых магнитных проводов. Применяют их в том случае, если по толщине магнитопровод больше в два раза, чем рабочий стержень устройства.
Дополнительно устанавливают на детали большую часть выступающей части на 3 миллиметра. Это нужно для того, чтоб щеки каркаса крепились прочно у оборудования. Гильза по размеру делается чуть больше рабочего стержня на 0,5 мм, зазоры не должны превышать этого показателя. Обязательно учитывают, получается ли каркас с помощью аппаратного воздействия или же он поставляется в комплекте устройства.
БП НА ТРАНЗИСТОРАХ С РЕГУЛИРОВКОЙ
Схема этого блока питания очень простая и интересная, но имеет свои тонкости в настройке. Поэтому многие её повторяют и натыкаясь на грабли пишут, что схема плохая или просто забрасывают её. Мне же она очень понравилась как для БП простого и надёжного для начинающих. До полноценного лабораторного она конечно не дотягивает, но это уже уровень выше. Если хотите собирать БП с точной регулировкой тока и напряжения, плюс хорошая стабильность выхода, то только на микросхемах.
В общем очень понравился гибрид параметрического и компенсационного стабилизатора напряжения. Благодаря этому в данной схеме можно применить практически любые стабилитроны, без подбора, примерно на 8-24 В, и подбором делителя на выходе подобрать выходное напряжение.
Сначала спаял на макетной плате. Стабилизация напряжения желала лучшего. Защита от КЗ вообще не работала. Спалил пару диодов, стабилитронов, но хоть ни одного силового транзистора.
Решил всё же разобраться. Промоделировал в Мультисиме. Разобрался что к чему и затем реализовал в железе — всё прекрасно работает. Схема оказалась вполне стоящая.
Самое важное в ней это узел защиты от КЗ на двух диодах, о которую все спотыкаются. Здесь надо правильно подобрать диоды защиты
Диод, который идёт на базу транзистора, должен имень меньшее падение напряжение на нём. Проверяется элементарно цифровым прибором в режиме прозвонки. Я выяснил, что оптимально установить германиевый типа Д9. А второй кремниевый, типа КД522.
Сделал ГСТ на двух КТ315. Самый простой вариант. Регулировку по току или узел ограничения по току пока не стал делать. Для этого блока это не даст качественной и точной настройки ограничения по току, но усложнит схему. Поэтому оставил только узел полной защиты от КЗ. Он точно нужен, особенно для начинающих или для гаража, где коротнут раз десять за день. Плата получилась маленькая и компактная.
Ещё одной особенностью схемы является Uмин на уровне 1-2 В (из-за диодов защиты). Можно подбором диодов добиться Uмин 0,7-0,8 В, но думаю для очень простого БП этого вполне хватит.
При КЗ силовой транзистор надёжно закрывается и на выходе 0 В и почти 0 мА, где то на уровне 20-200 мкА. В таком состоянии схема может находится бесконечно долго, а после устранения КЗ всё возвращается в нормальное состояние. Иногда нужно лишь кратковременно отключить нагрузку (это тоже особенность этой схемы, иногда с подключенной нагрузкой не запускается).
Я рассчитывал делитель на Uвых = 32 В при Uст = 15 В. Резисторы R2 = 5K6 и R6 = 4K3. От суммарного сопротивления этих резисторов зависит и ток холостого хода (без нагрузки) и выделяемая на них мощность. При Uвых = 32 В и R2 = 5K6 и R6 = 4K3 на них выделяется мощность 61 mW и 47 mW соответственно. Можно применять резисторы 0,25 Вт (1/4W) или даже 0,125 Вт (1/8W).
При делителе 390/390 Uвых будет Uст*2 — 2Uкэ, то есть примерно в два раза больше напряжения стабилизации стабилитрона Uвых = 5 х 2 — 2 х 0,65 = 28,65 В. Ток через делитель будет порядка Iд = 36 мА и выделяемая мощность на этих резисторах будет порядка 515 mW. То есть нужно применять резисторы мощностью 1 Вт
Вывод: подбором резисторов делителя можно подбирать Uвых.макс, для уменьшения нагрева нужно их выбирать в килоОмах.
Вот скриншоты для примера:
Сила тока должна оставаться на уровне установленного, но она тоже будет плавать. На счёт защиты при КЗ. Всё зависит от мощности питающего трансформатора, ёмкости фильтрующего конденсатора и силового транзистора. При напряжении 20 В и токе 3 А при замыкании на силовом транзисторе будет мгновенно 60 Вт выделяемой мощности плюс кратковременный бросок (импульс) тока с фильтрующего конденсатора (20 х 1,41 х 3 = 84,6 Вт), а это для большинства транзисторов китайских полный тепловой или токовый пробой. Даже наши советские типа КТ803, КТ805, КТ809 и так далее, через 10-20 секунд пробьются. А может и быстрее…
Для линейной схемы напряжением до 24-28 В, лучше брать ток не более 1,5-2 А, дабы не рисковать сжечь транзисторы. Вот как вариант:
Ограничение тока будет на уровне 3-х ампер. А полная мощность будет равна мощности потребляемой нагрузкой плюс остальное будет в виде тепловых потерь выделяться на силовом транзисторе. При КЗ вся мощность, которую сможет выдать трансформатор, выделится в виде тепла на силовом транзисторе. Автор материала TohaT.
Форум по блоку питания
Что такое ЛАТР
Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.
Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.
Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:
- Тиристорный регулятор. В этих аппаратах в качестве силового элемента установлены тиристор и диодный мост или симистор. Недостаток в отсутствии синусоидальной формы выходного напряжения. Самый известный прибор такого типа – диммер ламп освещения.
- Транзисторный регулятор. Дороже тиристорного, требует установки транзисторов на радиаторы. Обеспечивает синусоидальную форму выходного напряжения.
- ШИМ-контроллер.
Рекомендации о намотке
Рассматривая пошаговую инструкцию, как намотать трансформатор, следует уделить внимание последующим операциям. После укладывания проводника каркас потребуется заизолировать
Сквозь его отверстие необходимо продеть конец провода, выведенный из контура. Фиксация будет временной.
Опытные радиолюбители рекомендуют перед проведением намотки сначала потренироваться. Когда получится накладывать витки ровно, можно приступать к работе. Угол натяжения и провода должны быть постоянными. Каждый следующий слой не требуется мотать до упора. Иначе проводник может соскользнуть с предназначенного для него места.
В процессе наматывания витков нужно установить счетчик на нулевую отметку. Если же его нет, нужно проговаривать количество поворотов проволоки вслух. При этом следует максимально сконцентрироваться, чтобы не сбиться со счета.
Изоляцию нужно будет прижать кольцом из мягкой резины или клеем. Каждый последующий слой будет на 1-2 витка меньше, чем предыдущий.
Как выбрать ферритовый кольцевой сердечник?
Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в «Дополнительных материалах».
Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.
Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.
Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.
В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.
Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».
Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.
Вернуться наверх к меню.
Самостоятельное изготовление
Цена на готовые изделия велика, при этом не всегда удаётся найти прибор с требуемыми параметрами. Поэтому целесообразно изготовить трансформатор или автотрансформатор своими руками. Кроме изготовления трансформатора с нуля существует возможность перемотать неисправное устройство.
Для изготовления изделия потребуются трансформаторное железо и провод. Железо представляет собой пластины собранные в виде тора и образующие магнитопровод. Его можно купить либо взять со старых разобранных приборов. Например, взять пластины от промышленных трансформаторов и, используя приспособление в виде разрезанного кольца, скатать из металла пластинки в виде бублика. Пластинки собрать, сердечник обтянуть стеклотканью и залить лаком.
Витки обмоток изготавливаются из медного провода нужного диаметра. Сама намотка не вызывает сложностей:
- Наматывается первичная обмотка. Для этого один конец проволоки закрепляется на расстоянии около трёх сантиметров от поверхности железа, а оставшаяся часть провода сворачивается в виде полоски.
- Полоска с проводом поочерёдно продевается через внутреннее отверстие сердечника, обматывая его грани, и равномерно распределяется по всей поверхности. В конце вывод фиксируется и выводится в районе начала обмотки на таком же расстоянии, что и начало.
- Сверху первичная обмотка проматывается слоем диэлектрика (стеклотканью).
- Таким же способом наматывается вторичная обмотка.
- После выполнения требуемого количество витков сверху наматывается стеклоткань, и трансформатор покрывается лаком.
Если в процессе намотки необходимо выполнить отвод, тогда наматываемый провод разрывается. На место разрыва впаивается отвод, а основной провод мотается дальше. Место отвода, как правило, тщательно изолируется. Закрепление концов обмоток обычно выполняется с помощью ниток, которыми привязываются провода к поверхности сердечника или проложенного провода. Полоску продеваемого провода лучше разместить на «челнок». Изготавливается он из небольшого пластикового профиля с прорезями в торцах для фиксации проволоки.
Тороидальный трансформатор своими руками
Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.
Преимущества и недостатки тора
Тор обладает несомненными достоинствами по сравнению с другими видами:
- Относительно небольшие размеры.
- Очень сильный выходной сигнал.
- Обмотки имеют маленькую длину, и, как следствие, эти устройства характеризуются небольшим сопротивлением и очень высоким КПД.
- Благодаря своей форме легко устанавливаются и также легко демонтируются в случае необходимости.
Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции. Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков. Изменяя число витков, можно преобразовывать любое напряжение.
Расчет мощности тороидального трансформатора
Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.
Мощность будущего трансформатора рассчитывается по следующей формуле:
P=U*I*cosf/n
U — напряжение холостого хода
I — сила тока
cos f — коэффициент мощности, равный 0.8
n — коэффициент полезного действия, равный 0.7
Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.
После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:
N=4960*U/(S*I)
U — напряжение тока на первичной обмотке.
I — ток вторичной обмотки, или сварочный ток.
S — площадь сечения магнитопровода.
Количество витков на вторичной обмотке вычисляется по следующей формуле:
U1/U2=N1/N2
Тороидальный сердечник
Тороидальные трансформаторы имеют достаточно сложный сердечник. Лучше всего его изготавливать из специальной трансформаторной стали (сплав железа с кремнием) в виде стальной ленты. Лента предварительно свёртывается в габаритный рулон. Такой рулон, по сути, уже имеет форму тора.
Где взять готовый сердечник? Неплохой тороидальный сердечник можно обнаружить на старом лабораторном автотрансформаторе. В этом случае будет необходимо размотать старые обмотки и намотать новые на уже готовый сердечник. Перемотка трансформатора своими руками ничем не отличается от намотки нового трансформатора.
Изготовление каркаса катушки трансформатора своими руками
Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.
На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.