Твердотельное реле: устройство, принцип работы, схемы подключения

Виды

Разделение по видам обуславливается как рабочими параметрами некоторых устройств, так и сферой их применения. Поэтому, классификация твердотельных реле осуществляется по нескольким факторам, определяющим тот или иной параметр.

Так, все логические элементы, в зависимости от рода тока, подразделяются на две группы – реле постоянного и переменного тока. Первые отличаются высокой надежностью и отлично справляются с поставленными задачами, как при низких, так и при высоких температурах. Второй вид обладает высокой скоростью срабатывания.

В зависимости от количества подключаемых фаз все твердотельные реле подразделяются на однофазные и трехфазные. Первый вид обеспечивает питание однофазной нагрузки или устройств постоянного тока. Трехфазные, в большинстве случаев, используются для питания электродвигателей, но встречаются коммутаторы и для других типов оборудования.

Твердотельное реле: устройство, принцип работы, схемы подключения

Рис. 4. Трехфазные и однофазные твердотельные реле

По типу управления различают следующие виды:

  • Фазовое – плавно изменяет напряжение на выходе в процентном соотношении;
  • Мгновенное – производит переключение мгновенно;
  • При переходе через 0 – переключение осуществляется только при достижении синусоидой нулевого значения.

В зависимости от пропускаемой нагрузки, все устройства могут подразделяться на слаботочные и силовые. Первые устанавливаются в цепи управления, вторые используются для питания мощного бытового и промышленного оборудования.

Конструктивные особенности

В основе твердотельного реле лежит электронная плата, в состав которой входит три главных элемента — узлы управления и развязки, а также силовой ключ. В роли силовых элементов применяются такие детали:

  • Для постоянного I — транзисторы полевого типа, простые транзисторы, модульные элементы класса IGBT, а также MOSFET-транзисторы.
  • Для переменного I — сборки на базе тиристоров, а также симисторы.

Развязка цепи обеспечивается оптронами — изделиями, состоящими из излучающего и принимающего свет устройства. Между ними установлен диэлектрик, имеющий прозрачную структуру.

Твердотельное реле: устройство, принцип работы, схемы подключения

Управляющий узел выполнен в виде стабилизирующей схемы, обеспечивающей оптимальные уровни тока и напряжения для излучающего свет элемента. Напряжение на входе схемы должно быть от 70 до 280 Вольт.

Что касается напряжения нагрузки, его величина — до 480 Вольт. Расположение электроприбора (до или после ТТР) не имеет значения.

Как правило, устройство монтируется после нагрузки с последующим подключением к «земле». При таком варианте схемы удается защитить внутренние элементы от протекания тока КЗ (он потечет через заземляющий провод).

Принцип работы

Прежде чем рассматривать твердотельное устройство, следует вспомнить принцип работы обычного электромеханического реле. Оно состоит из контактов и катушки управления, работающих под влиянием подаваемого напряжения. Под его воздействием контакты соответственно замыкаются или размыкаются. Принцип действия твердотельного реле аналогичный. Основное различие заключается в использовании полупроводниковых приборов вместо контактов.

Наибольшее распространение получили симисторы и тиристоры, выполняющие коммутацию переменного тока, а также транзисторы, предназначенные для работы с постоянным током.

Твердотельное реле: устройство, принцип работы, схемы подключения

В свое время появление полупроводников произвело настоящую революцию в электронике и радиотехнике. Они стали использоваться и в твердотельных реле, обеспечивая контакты между цепями с низким и высоким напряжением. В составе каждого устройства имеется вход, оптическая развязка, триггерная, переключающая и защитная цепи.

Вход реле оборудован первичной цепью, в которую последовательно включено сопротивление на постоянном изоляторе. Основной функцией входа является прием импульса и последующая передача его на элемент устройства, коммутирующий нагрузку. Между первичной и вторичной цепью существует изоляция в виде оптической развязки. Именно эта развязка характеризует индивидуальные качества всех видов и типов реле и определяет принцип действия каждого устройства.

Твердотельное реле: устройство, принцип работы, схемы подключения

Для обработки входного сигнала существует триггерная цепь, являющаяся отдельным конструктивным элементом. Эта цепь принимает участие в переключении выхода. В различных конструкциях твердотельных реле триггерная цепь может быть частью оптической развязки, или применяться как самостоятельный элемент.

Изготовление твердотельного реле своими руками

Непосредственно своими руками, каждому электронщику среднего уровня под силу собрать простое твердотельное реле. Прибор, сделанный своими руками, может использоваться для управления нагрузкой, питаемой от бытовой сети переменного тока.

К примеру, вполне допустимо сделать более эффективным управление лампами освещения или электродвигателями, если собрать электронный регулируемый коммутатор по схеме, представленной ниже на картинке. Сборка не представляется трудным делом, учитывая минимум используемых электронных компонентов.

Схема для сборки своими руками под нагрузку 300-600 Вт при напряжении 120 — 220В: 1 — оптопара МОС 320, МОС 341; 2 — симистор BTA06-600B; 3 — управляющий сигнал от микроконтроллера

Схема основана на электронном устройстве развязки — оптопаре MOC 3020. Между тем опто-симисторный регулятор MOC 3041 имеет те же характеристики, но дополнительно наделён встроенной системой детектирования пересечения точки нуля.

Этот вариант позволяет получить полную мощность без тяжелых пусковых токов при переключении индуктивных нагрузок. Благодаря диоду D1 предотвращается повреждение схемы по причине обратного подключения входного напряжения.

Резистор R3, номиналом 56 Ом, шунтирует прохождение токов, когда симистор находится в состоянии закрытого перехода, исключая ложное срабатывание. Этим же резистором организуется связь терминала затвора с нижним по схеме электродом, чем обеспечивается полное закрытие перехода симистора.

Если используется входной сигнал широтно-импульсной модуляции, частота переключения режимов «включено-отключено» должна быть установлена максимум на 10 Гц не более для нагрузки переменного тока. В противном случае, переключение состояния выходной цепи реле может быть нарушено.

Подробный видео-рассказ о принципах работы ТТР 

Видеоролик ниже достаточно подробно показывает все тонкости функционирования электрических приборов, получивших название — твердотельное реле. Такие знания непременно пригодятся на практике, связанной с обслуживанием электрических систем:

При помощи информации: Electronics-tutorials

Принцип действия

В твердотельных реле взаимодействие управляющего сигнала с управляемым происходит путем формирования гальванической развязки – как правило, с помощью оптрона. Управляющее напряжение подает питание на светодиод, а он, в свою очередь, освещает фотодиод, и с помощью тока последнего включается МОП или тиристор, управляющий нагрузкой. Тиристоры и симисторы используются в устройствах, применяемых при переменном токе, а транзисторы – в приборах с постоянным током. Также применяются и специализированные оптоэлектронные приборы – оптотиристоры и фототиристоры.

Популярные статьи  Что такое диэлектрические потери и из-за чего они возникают?

Структура ТТР включает:

  • вход – первичная цепь, состоящая из резистора на постоянном изоляторе, имеющего последовательное подключение. Главной функцией входной цепи является принятие сигнала и передача его устройству реле, коммутирующему нагрузку;
  • оптическая развязка – используется для изоляции входной и выходной сети переменного тока;
  • триггерная цепь – отдельный элемент, обрабатывающий входной сигнал и переключающий выход;
  • цепь переключателя – подает силу напряжения, включает в себя транзистор, симистор и кремниевый диод;
  • цепь защиты – может быть внешней или внутренней, защищает устройство от сбоев или появления ошибок.

Для коммутации индуктивной нагрузки при помощи твердотельного реле необходимо увеличить запас тока не менее, чем в 6–8 раз.

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Твердотельное реле — принцип работы

Твердотельное реле — это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Это интересно: Производители автоматических выключателей – рейтинг лучших фирм: изучаем развернуто

Особенности процесса изготовления

Нагрузка нагревательного элемента составляет Вт.Твердотельное реле: устройство, принцип работы, схемы подключения

Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.Твердотельное реле: устройство, принцип работы, схемы подключенияВ обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.Твердотельное реле: устройство, принцип работы, схемы подключения

Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.Твердотельное реле: устройство, принцип работы, схемы подключения

Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.

Виды ТТР

Твердотельные реле по устройству и принципу работы можно разделить на следующие разновидности:

  • По виду управляющего напряжения – переменное или постоянное (дискретные). Иногда на вход подключается переменный резистор, т.е. используется аналоговое управление, соответственно и выходное напряжение меняется плавно, как в диммере для освещения.
  • По виду коммутируемого напряжения – переменное или постоянное.
  • По количеству фаз для переменного напряжения – одна или три.
  • Для трехфазных – с реверсом или без.
  • По конструкции – монтаж на поверхность или на ДИН-рейку. Хотя, практически все производители предлагают переходные планки для универсального монтажа.

Кроме того, стандартной опцией для коммутации переменного напряжения является переключение в момент перехода через ноль.

Выше уже было фото ТТЛ, у которого вход – постоянное напряжение, выход – переменное (АС-DC). Вот ещё какие реле у меня есть сейчас под рукой:

SSR OMRON DC-DC. Вход – постоянное напряжение до 24 В, выход – тоже постоянное, до 200 В

SSR FOTEK DC-DC – твёрдотельные реле постоянного тока

Этими двумя моделями реле удобно коммутировать нагрузку с постоянным напряжением 24 Вольта, когда управляющий сигнал (тоже 24 В) приходит с выхода контроллера или с датчика. Можно сказать, что это такие компактные усилители тока. Причем коэффициент усиления при этом – около 1000, поскольку ток управляющей цепи – менее 10 мА.

Дальше-больше. Ниже показано трехфазное твердотельное реле. На его входы R, S, T подается три фазы 380В, а с его выходов U, V, W напряжение подается на асинхронный двигатель или трехфазный ТЭН.

Fotek 3 phase. Трехфазное твердотельное реле

Это реле работает (по результатам работы) примерно, как магнитный пускатель с катушкой 24 VDC.

Популярные статьи  Оказание первой помощи при поражении электрическим током

Как подключить электродвигатель через магнитный пускатель – подробно расписано на СамЭлектрике здесь.

Управляющие контакты показаны поближе:

Fotek 3 phase. Входные управляющие контакты

Видите на фото, под управляющие контакты предусмотрено ещё одно место, которое в данном случае не используется? На этом месте у другой модели подается сигнал реверса. То есть, при подаче на один вход фазы через реле коммутируются для прямого вращения двигателя, при подаче на другой вход – для обратного.

Кто не в курсе – прямое вращение – это когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Как поменять направление вращения двигателя – поменять местами любые две фазы.

По теме рекомендую почитать мою статью по трем фазам и отличии трехфазного питания от однофазного.

Трехфазные реле с реверсом бывают с коммутацией двух фаз, третья подключена к двигателю постоянно.

А теперь представьте, столько места занимает и сколько шума при работе создает обычное реверсивное реле на такой ток? То-то и оно!

Вот такое же ТТЛ, но помощнее и с управлением от переменки 220В.

Fotek TSR-40AA-H 3 phase 40A

Вроде всё, пишите, у кого какой опыт по применению!

Вот нарыл в свободном доступе файлы, возможно, написано информативнее, чем у меня:

В чем особенности?

При создании твердотельного реле удалось исключить появление дуги или искр в процессе замыкания/размыкания контактной группы. В результате срок службы прибора увеличился в несколько раз. Для сравнения лучшие варианты стандартных (контактных) изделий выдерживают до 500 000 коммутаций. В рассматриваемых ТТР такие ограничения отсутствуют.

Стоимость твердотельных реле выше, но простейший расчет показывает выгоду их применения. Это обусловлено следующими факторами — экономией электроэнергии, продолжительным ресурсом работы (надежностью) и наличием управления с помощью микросхем.

Выбор достаточно широк, чтобы подобрать устройство с учетом поставленных задач и текущей стоимости. В продаже имеются как небольшие приборы для установки в бытовых цепях, так и мощные устройства, используемые для управления двигателями.

Как отмечалось ранее, ТТР отличаются по типу коммутируемого напряжения — они могут быть рассчитаны на постоянный или переменный I. Этот нюанс требуется учесть при выборе.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Как обогреть кровлю и водостоки с помощью антиобледенительной системы

К особенностям твердотельных моделей стоит отнести чувствительность прибора к нагрузочным токам. В случае превышения этого параметра выше допустимой нормы в 2-3 и более раз, изделие ломается.

Чтобы избежать такой проблемы в процессе эксплуатации, важно внимательно подойти к процессу монтажа и установить в цепи ключа защитные устройства. Кроме того, важно отдавать предпочтение ключам, имеющим рабочий ток в два или три раза превышающий коммутируемую нагрузку

Но и это не все

Кроме того, важно отдавать предпочтение ключам, имеющим рабочий ток в два или три раза превышающий коммутируемую нагрузку. Но и это не все

Для дополнительной защиты рекомендуется предусмотреть в схеме предохранители или автоматические выключатели (подойдет класс «В»).

Виды устройства

SSR различаются по следующим свойствам.

  1. Характер тока в сети

Однофазное реле способно коммутировать электрический ток от 10 до 120 А или от 100 до 500 А. Управление проводится через фазу с помощью аналогового сигнала (непрерывный по времени) и переменного резистора (элемент электрической цепи). Как правило, корпус однофазного SSR стандартный, модульный (завершенная конструкция).

Однофазное реле используется в бытовых приборах.

Рекомендация. Установка однофазного ТТР в электрическую систему обезопасит домашнюю технику от поломки.

Трехфазное релекоммутирует электричество на трёх фазах сразу. Диапазон напряжения 10 – 120 А. Отдельными характеристиками обладает реверсивное трехфазное ТТР. Выделяется надёжной коммутацией цепей. Сфера использования – непостоянная работа двигателя.

Чтобы не происходило перенапряжение, используется варистор (полупроводниковый резистор)или предохранитель. Трёхфазное SSR имеет долгий срок использования в сравнении с однофазным устройством.

  1. Способ управления

Коммутация постоянного тока. Применяется при постоянном напряжении от 3 до 32 вольт. Отличаются высокой надежностью работы. Поддержка температур от -30 до +70 соблюдается практически у всех моделей.

Коммутация переменного тока. SSR переменного тока характеризуется маленьким соотношением электромагнитных помех, бесшумностью, экономным энергопотреблением и оперативной работой. Диапазон напряжения от 90 до 250 вольт.

Реле, управляемое вручную. Оно позволяет управлять настройками.

Коммутация – процесс переключение  и отключение напряжения. Происходит моментально при замыкании и размыкании цепей.

  1. Тип коммуникации
  • Конструкция с фазовым регулятором мощности. Тип коммуникации – изменения на выходе нагрузки с управлением мощности, нагреванием (уровень освещения).
  • Прибор, контролируемый нулевым регулятором мощности. Область использования –коммутация ёмкостных (конденсатных) резистивных (лампы и нагреватели) слабо индуктивных приборов. SSR с нулем необходимы для коммутации индуктивных (трансформаторы, двигатели) и резистивных нагрузок при необходимости мгновенного действия.
  1. По конструкции
  • Устанавливаемые на одну рейку.
  • Монтируемые на планки переходного типа.

Твердотельные реле по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток  достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

управление постоянным током
управление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

Популярные статьи  Обжим витой пары: пошаговые инструкции и схемы цветов на 4 и 8 жил

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока,  а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

С фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

Примерная схема подключения выглядит вот так:

Рекомендации по выбору

В связи с электрическими потерями на силовых полупроводниковых элементах твердотельные реле нагреваются при коммутации нагрузки. Это накладывает ограничение на величину коммутируемого тока. Температура 40 градусов Цельсия не вызывает ухудшения рабочих параметров устройства. Однако нагрев выше 60С сильно снижает допусимую величину коммутируемого тока. Реле в этом случае может перейти в неуправляемый режим работы и выйти из строя.

Поэтому, при длительной работе реле в номинальных, и особенно, «тяжелых» режимах (при длительной коммутации токов свыше 5 А) требуется применение радиаторов. При повышенных нагрузках, например, в случае нагрузки «индуктивного» характера (соленоиды, электромагниты и т.п.), рекомендуется выбирать устройства с большим запасом по току – в 2-4 раза, а в случае управления асинхронным электродвигателем необходим 6-10 кратный запас по току.

При работе с большинством типов нагрузок включение реле сопровождается скачком тока различной длительности и амплитуды, величину которого необходимо учитывать при выборе:

  • чисто активные (нагреватели) нагрузки дают минимально возможные скачки тока, которые практически устраняются при использовании реле с переключением в «0»;
  • лампы накаливания, галогенные лампы при включении пропускают ток в 7…12 раз больше номинального;
  • флуоресцентные лампы в течение первых секунд (до 10 с) дают кратковременные скачки тока, в 5…10 раз превышающие номинальный ток;
  • ртутные лампы дают тройную перегрузку по току в течение первых 3-5 мин.;
  • обмотки электромагнитных реле переменного тока: ток в 3…10 раз больше номинального в течение 1-2 периодов;
  • обмотки соленоидов: ток в 10…20 раз больше номинального в течение 0,05 – 0,1 с;
  • электродвигатели: ток в 5…10 раз больше номинального в течение 0,2 – 0,5 с;
  • высокоиндуктивные нагрузки с насыщающимися сердечниками (трансформаторы на холостом ходу) при включении в фазе нуля напряжения: ток в 20…40 раз больше номинального в течение 0,05 – 0,2 с;
  • емкостные нагрузки при включении в фазе, близкой к 90°: ток в 20…40 раз больше номинального в течение времени от десятков микросекунд до десятков миллисекунд.

Будет интересно Как используется фотореле для уличного освещения?

Способность выдерживать токовые перегрузки характеризуются величиной «ударного тока». Это – амплитуда одиночного импульса заданной длительности (обычно 10 мс). Для реле постоянного тока эта величина обычно в 2 – 3 раза превосходит значение максимально допустимого постоянного тока, для тиристорных реле это соотношение около 10. Для токовых перегрузок произвольной длительности можно исходить из эмпирической зависимости: увеличение длительности перегрузки на порядок ведет к уменьшению допустимой амплитуды тока. Расчет максимальной нагрузки представлен в таблице ниже.

Твердотельное реле: устройство, принцип работы, схемы подключения
Таблица расчета максимальной нагрузки для твердотелого реле.

Выбор номинального тока для конкретной нагрузки должен заключаться в соотношении между запасом по номинальному току реле и введением дополнительных мер по уменьшению пусковых токов (токоограничивающие резисторы, реакторы и т.д.).

Для повышения устойчивости устройства к импульсным помехам параллельно коммутирующим контактам ставится внешняя цепь, состоящая из последовательно включенных резистора и емкости (RC-цепь). Для более полной защиты от источника перегрузки по напряжению со стороны нагрузки необходимо включить защитные варисторы параллельно каждой фазе твердотельного реле.

Твердотельное реле: устройство, принцип работы, схемы подключения
Схема подключения твердотельного реле.

При коммутации индуктивной нагрузки использование защитных варисторов обязательно. Выбор необходимого наминала варистора зависит от величины напряжения питающего нагрузку, и расчитывается по формуле: Uваристора = (1,6…1,9)хUнагрузки.

Тип варистора определяется на основе конкретных характеристик работы устройства. Наиболее популярными отечественными варисторами являются серии: СН2-1, СН2-2, ВР-1, ВР-2. Твердотельное реле обеспечивает хорошую гальваническую изоляцию входных и выходных цепей, а также токоведущих цепей от элементов конструкции прибора, поэтому дополнительных мер изоляции цепей не требуется.

Защита от коротких замыканий

В случае повреждения изоляции в цели и по другим причинам может возникнуть КЗ. Чтобы избежать повреждения ТТР используются специальные предохранители. Они разработаны для применения в комплексе с твердотельными изделиями.

Их легко распознать по следующим спецификациям:

  • gR — вставки плавки, работающие в широком диапазоне I. Они используются для защиты полупроводников. На сегодня это одни из наиболее быстродействующих приборов.
  • gS — как и прошлые предохранители, могут работать во всех диапазонах I. Применяются в случае высокой нагрузки, а также для защиты полупроводников.
  • aR — вставки плавки, не имеющие ограничений по I работы. Они устанавливаются для защиты полупроводников от КЗ. Недостатком таких изделий является высокая цена. Вот почему многие отдают предпочтение более доступным автоматам B-класса.
Добавить комментарий