Перспективы единицы силы тока в будущем
Когда определено, что такое амперы, можно рассмотреть перспективы этой единицы в будущем. В 2011 году на международной конференции оговорены условия предстоящей ревизии обозначений единиц в системе СИ.
Предложенные новые эталоны должны повысить точность различных измерений в любом временном, метрическом и географическом векторах без утраты точности. Ампер не потерпит особых изменений, кроме того, что его величина станет обозначаться в зависимости от данного числа.
На сегодняшний день ампер – это результат воображаемого процесса, в котором представляют возникновение силы между двумя проводниками безразмерной длины. Практически это невозможно воспроизвести, потому что нет таких длинных и тонких проводов. На конференции решили применить новую идею. Она будет основываться на физических константах или атомных свойствах. Такой физической константой будет заряд электрона.
Внимание! Современное определение: 1 ампер – это движение электронов соответствующее потоку 1/1,6*10-19 элементарных зарядов в 1 секунду. Практическим инструментом послужит одноэлектронный насос, который позволяет перемещать в течение одного своего цикла фиксированное количество электронов
Практическим инструментом послужит одноэлектронный насос, который позволяет перемещать в течение одного своего цикла фиксированное количество электронов.
В будущем, ампер – это мера силы тока, определение которого перестало описываться вымышленной виртуальной установкой, приобрело прочную, фундаментальную основу.
Воздействие на человека
В большинстве случаев электрический ток представляет собой поток электронов. Поскольку ампер является мерой количества заряда, проходящего в секунду, нетрудно будет посчитать количество электронов в перемещённом заряде: 1 Кл = 6,24151·10 18. То есть один ампер равен потоку 6340 квадриллионов частиц в секунду. Это колоссальная цифра, но вряд ли она иллюстративна для сравнительного понимания, когда показатель чего-либо измеряют в амперах. В этом помогут следующие повседневные примеры:
- 160х10 -19 — один электрон в секунду;
- 0,7х10 -3 — слуховой аппарат;
- 5х10 -3 — пучок в кинескопе телевизора;
- 150х10 -3 — портативный ЖК телевизор;
- 0,2 — электрический угорь;
- 0,3 — лампа накаливания;
- 10 — тостер, чайник;
- 100 — стартер автомобиля;
- 30х10 3 — удар молнии;
- 180х10 3 — дуговая печь для ферросплавов;
- 5х10 6 — дуга между Юпитером и Ио.
Порог смертельно опасного воздействия на человеческий организм начинается с 18 мА. Ток, превышающий это значение и проходящий через грудную клетку, способен стимулировать мышцы груди таким образом, что их спазмы могут вызвать полную остановку дыхания. Другой опасный эффект при подобном воздействии связан с фибрилляцией желудочков сердца. Основные факторы летальности:
- Сила тока. Так как сопротивление между точками входа и выхода — постоянная величина, по закону Ома высокое напряжение делает вероятным высокий ампераж.
- Маршрут протекания. Наиболее опасны для сердечной мышцы направления рука-рука и передняя-задняя части грудной клетки.
- Индивидуальная чувствительность к воздействию электричества и особенности организма (сопротивление кожи и её влажность, возраст и пол, заболевания, наличие медицинских имплантов).
- Продолжительность воздействия.
Вам это будет интересно Оказание первой помощи при поражении электрическим током
Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера
Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.
Анализ задачи:
Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.
Решение:
В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.
Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.
1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (о).
2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.
3) Приходим к выводу: проводник А привлекается к проводнику В.
Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.
1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (о).
2) Определим направление силы Ампера, действующая на проводник В.
3) Приходим к выводу: проводник В привлекается к проводнику А.
Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.
Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?
Анализ задачи:
Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:
- сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх)
- значение силы Ампера равна значению силы тяжести FA = Fтяж
Направление тока определим, воспользовавшись правилом левой руки.
Решение:
Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.
Учитываем, что FA = Fтяж. FA= BIlsinα, где sin α = 1; Fтяж = mg
Из последнего выражения найдем силу тока: I = mg/Bl
Проверим единицу, найдем значение искомой величины.
Ответ: I = 8 А; Ток в направлении от нас.
Подводим итоги
Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.
Как перевести из ампера в миллиампер
Основной единицей измерения силы тока является ампер. Так, например, ток силой 1 ампер (А) протекает через лампочку мощностью 220 Ватт, подключенную к электросети с напряжением 220 Вольт. В современной электронной технике, особенно миниатюрной, используются токи, как правило, значительно меньшей силы. Для их измерения применяется специальная (дробная) единица измерения силы тока – миллиампер (мА).
Чтобы перевести силу тока, заданную в амперах, в миллиамперы, просто умножьте количество ампер на тысячу. В виде несложной формулы это правило можно записать следующим образом:
Кма = Ка * 1000, где: Кма – количество миллиампер, Ка – количество ампер.
Учтите, что миллиампер – это одна тысячная, а не миллионная часть ампера. Чтобы обозначить полученное количество миллиампер используйте следующие сокращения:
мА (русский вариант), или mА – международное обозначение.
Иногда встречается написание «ма» или «ma» — такие сокращения применять нежелательно
Обратите внимание на то, что для обозначения тысячной доли Ампера используется прописная русская или латинская (английская) буква «эм». Нечеткое или неправильное написание этой буквы может привести к путанице
Так, например, через МА обозначается Мегаампер (1000 Ампер), а через μА – микроампер (миллионная часть ампера).
Пример. Ток какой силы, выраженный в миллиамперах, протекает через энергосберегающую лампочку мощностью 9 Вт, подключенную к бытовой осветительной электросети? Решение. Так как стандартное напряжение в бытовой электрической сети составляет 220 В, а сила тока в Амперах равняется мощности, поделенной на напряжение, то количество Ампер, посчитанное на стандартном Windows калькуляторе, равно: Ка = 9/220 = 0,040909090909090909090909090909091
Чтобы перевести количество Ампер в миллиамперы просто «передвиньте» десятичную точку (в данном случае обозначена через запятую) на три цифры вправо. Получится: Кма = 0040,909090909090909090909090909091
Этот результат, хотя и является правильным, но для практических расчетов не совсем удобен. Поэтому слева следует убрать «лишние» незначащие нули и округлить число. В итоге получится: 40,91. Ответ: 40,91 мА.
Итак, если количество Ампер представляет из себя десятичную дробь, то переместите десятичную точку на три знака вправо. Если количество Ампер – целое, то для перевода Ампер в миллиамперы припишите к этому числу справа три нуля.
Пример. Сколько миллиампер протекает через обогреватель мощностью 2,2 киловатта, включенный в обычную розетку? Решение. Переведите мощность в ватты и разделите ее значение на напряжение в электросети (220 В): 2,2 * 1000 / 220 = 2200 / 220 = 10 (А). Теперь просто припишите к 10 три нуля справа: 10 000. Ответ: 10000 мА.
Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера
Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.
Анализ задачи:
Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.
Решение:
В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.
Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.
- С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).
- Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.
- Приходим к выводу: проводник А привлекается к проводнику В.
Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.
- Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).
- Определим направление силы Ампера, действующая на проводник В.
- Приходим к выводу: проводник В привлекается к проводнику А.
Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.
Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?
Анализ задачи:
Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:
- сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх)
- значение силы Ампера равна значению силы тяжести FA = Fтяж
Направление тока определим, воспользовавшись правилом левой руки.
Решение:
Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.
Учитываем, что FA = Fтяж. FA= BIlsinα, где sin α = 1; Fтяж = mg
Из последнего выражения найдем силу тока: I = mg/Bl
Проверим единицу, найдем значение искомой величины.
Ответ: I = 8 А; Ток в направлении от нас.
Подводим итоги
Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.
- https://rusenergetics.ru/novichku/amper
- https://obrazovaka.ru/fizika/pravilo-levoy-ruki-dlya-sily-ampera.html
- https://www.poznavayka.org/fizika/sila-ampera-i-zakon-ampera/
- https://electricavdome.ru/sila-ampera-i-zakon-ampera-chto-izmeryayut-v-amperax.html
- https://www.asutpp.ru/zakon-ampera.html
- https://amperof.ru/teoriya/amper-chto-eto-takoe.html
- https://calcsbox.com/post/zakon-ampera.html
- https://oxotnadzor.ru/kak-opredelit-napravleniye-sily-ampera-v-ramke-s-tokom/
ФИЗИКА
§ 4.8. Применения закона ампера. Электроизмерительные приборы
С помощью закона Ампера можно вычислить силу и момент сил, действующий на замкнутый проводник с током произвольной формы в любом магнитном поле. Конечно, эти вычисления тем проще, чем проще форма контура и конфигурация магнитного поля.
Момент сил, действующий на прямоугольную рамку с током
Определим момент сил, действующий на прямоугольную рамку с током в однородном магнитном поле с индукцией . Стороны рамки имеют размеры а и b; сила тока в ней I. Индукция магнитного поля составляет с нормалью к рамке угол α (рис. 4.40). Расчет проведем в единицах СИ.
Рис. 4.40
На рисунке 4.41 показан вид сверху на сечение рамки горизонтальной плоскостью. В соответствии с правилом определения направления векторного произведения двух векторов (см. § 4.6) на стороны рамки длиной b действует пара сил 1 и 2, перпендикулярных вектору В, которая создает момент сил относительно оси, проходящей через середину рамки. Силы, действующие на стороны рамки длиной а, лишь растягивают рамку.
Рис. 4.41
По закону Ампера
Плечо каждой из этих сил равно:
Суммарный момент сил равен:
где S = ab — площадь рамки. При α = 90° момент сил максимален и совпадает со значением Мmax из формулы (4.3.1), которая была введена в качестве определения модуля вектора магнитной индукции. Только в формуле (4.3.1) коэффициент k надо положить равным единице.
Применения закона Ампера
Закон Ампера используется для расчета сил, действующих на проводники с током, во многих технических устройствах, в частности в электродвигателях. Действие всех электродвигателей основано на использовании силы Ампера. По обмотке вращающейся части двигателя якоря 3 (рис. 4.42) протекает электрический ток.
Рис. 4.42
Мощные электромагниты создают магнитное поле, которое действует на проводники с током в обмотке якоря и заставляет их двигаться (рис. 4.43).
Рис. 4.43
Якорь изготовляется из стальных пластин (рис. 4.44, а), а полюсам электромагнита придается специальная форма (рис. 4.44, б), с тем чтобы сконцентрировать магнитное поле в местах, где располагается обмотка ротора. Специгшьные устройства — коллектор 1 и щетки 2 (см. рис. 4.42) — обеспечивают такое направление тока в обмотках, чтобы магнитное взаимодействие создавало момент, приводящий к непрерывному вращению якоря.
Рис. 4.44
Электроизмерительные приборы
Действие магнитного поля на контур с током используется в электроизмерительных приборах магнитоэлектрической системы для измерения силы тока и напряжения.
Измерительный прибор такой системы устроен следующим образом. На легкой, обычно алюминиевой, рамке прямоугольной формы с прикрепленной к ней стрелкой намотана катушка, имеющая N витков (рис. 4.45, а). Рамка укреплена на двух полуосях. В положении равновесия ее удерживают две тонкие спиральные пружины 2 (рис. 4.45, б). Момент сил упругости Mмех, действующий со стороны пружины и возвращающий катушку в положение равновесия, пропорционален углу φ отклонения стрелки от положения равновесия: Ммех = fφ (f — постоянный коэффициент пропорциональности). Катушку помещают между полюсами постоянного магнита специальной формы (см. рис. 4.45, а).
Рис. 4.45
Внутри катушки расположен цилиндр из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в той области, где находятся витки катушки (рис. 4.45, в). В результате при любом положении катушки момент сил, действующ,ий на нее со стороны магнитного поля, максимален и при неизменной силе тока один и тот же. Катушка с током поворачивается до тех пор, пока момент сил упругости, действующий со стороны пружины, не уравновесит момент сил, действующий на рамку со стороны магнитного поля:
Отсюда следует, что измеряемая сила тока прямо пропорциональна углу отклонения стрелки:
Здесь коэффициент — постоянная для данного прибора величина.
Прибор можно проградуировать так, чтобы угол поворота определял силу тока в амперах или других единицах. Согласно закону Ома сила тока в приборе . Поэтому прибор можно проградуировать и так, чтобы определенному углу φ отклонения стрелки соответствовало напряжение U на зажимах прибора в вольтах или других единицах.
Таким образом, прибор может служить как амперметром, так и вольтметром. В последнем случае для увеличения сопротивления прибора нужно последовательно с катушкой включить резистор с большим сопротивлением.
Закон Ампера используется при конструировании электродвигателей. На его основе созданы электроизмерительные приборы для измерения силы тока и напряжения. |
Определение слова «Ампер» по БСЭ:
Ампер — Ампер (Ampйre)Андре Мари (22.1.1775, Лион, — 10.6.1836, Марсель), французский физик и математик, один из основоположников электродинамики, член Парижской АН (1814). А. родился в аристократической семье. С 14 лет, прочитав все 20 томов«Энциклопедии» Д. Дидро и Ж. Л. Даламбера, он всецело отдался занятиям естественными науками и математикой. В 1801 А. занял кафедру физики в Центральной школе г. Бурк-ан-Брес, а в 1805 получил место репетитора в Политехнической школе в Париже. В этот период им опубликованы работы по теории вероятностей, приложению вариационного исчисления к задачам механики и ряд исследований по математическому анализу. С 1824 профессор Нормальной школы в Париже.Работы А. в области физики поставили его в ряд крупнейших учёных. После открытия в 1820 X. К. Эрстедом действия электрического тока на магнитную стрелку А. предложил «правило пловца» для определения направления отклонения магнитной стрелки током. Дальнейшие исследования привели А. к открытию механического взаимодействия электрических токов и установлению количественного соотношения для определения силы этого взаимодействия (Ампера закон). А. построил первую теорию Магнетизма, основанную на гипотезе молекулярных токов, согласно которой магнитные свойства вещества обусловлены электрическими токами, циркулирующими в молекулах. Теория магнетизма А. покончила с представлениями о«магнитной жидкости» как особом носителе магнитных свойств и была предвестником электронной теории магнетизма. после А. магнетизм стал частью электродинамики. Электродинамическая теория изложена А. в его сочинении «Теория электродинамических явлений, выведенная исключительно из опыта»(1826). В конце жизни А. разработал классификацию науки своего времени, изложенную в работе «Опыт философии наук…» (1834).Соч.: Journal et correspondance de Andrй Marie Ampиre, 9 йd., P., 1893. Correspondance du grand Ampere, publ. par L. de Launay…, v. 1-3, P., 1936-43. в рус. пер. — Электродинамика, М., 1954 (имеется библиография трудов А. и литература о нём).Лит.: Белькинд Л. Д., А. М. Ампер. 1775-1836, М., 1968 (библ., с. 234-251).
Ампер — 1) единица силы электрического тока, входит в число основных единиц Международной системы единиц и системы электрических и магнитных единиц МКСА. Названа в честь французского физика А. Ампера. русское обозначение — а, международное А. С момента введения А. в качестве единицы силы тока (1881, 1-й Международный конгресс электриков) его определение претерпело ряд изменений. Вначале А. был определён как сила тока, который протекает по проводнику сопротивлением в 1 ом при разности потенциалов на концах проводника в 1 в. При этом вольт определялся как 108, а ом — как 109 соответствующих единиц электромагнитной системы СГСМ.Трудности практического воспроизведения теоретически установленных абсолютных электрических единиц привели к введению международных электрических единиц (1893), основанных на вещественных эталонах. Международный А. был определён как сила неизменяющегося электрического тока, который, проходя через водный раствор азотнокислого серебра, выделяет 1,11800 мг серебра в 1 сек. Прогресс, достигнутый затем в области электрических измерений, позволил отказаться от вещественного эталона А. (с 1948). В ГОСТ 9867-61«Международная система единиц» А. определяется через механическое взаимодействие двух токов (см. Ампера закон): «А. есть сила неизменяющегося тока, который, будучи поддерживаем в двух параллельных прямолинейных проводниках бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2Ч10&minus.7 единицы силы системы МКС на 1 м длины». А. воспроизводится с помощью т. н. токовых весов, или ампер-весов, которые позволяют с высокой точностью определить силу механического взаимодействия двух катушек с током, а следовательно, и значение силы тока. Международный А. мало отличается от абсолютного А.: 1 амежд = 0,99985а.2) Единица магнитодвижущей силы (в системах СИ и МКСА): «А. — магнитодвижущая сила вдоль замкнутого контура, сцепленного с контуром постоянного тока силой 1 а». Соотношение между Гильбертом (единицей системы СГС) и А.: 1 гб = 10/(4 &pi.)а = 0,7958а. Старое наименование единицы магнитодвижущей силы — ампер-виток (ав).Лит.: Маликов С. Ф., Единицы электрических и магнитных величин. Исторический очерк, 2 изд., М. — Л., 1960. Бурдун Г. Д., Единицы физических величин, 4 изд., М., 1966. Бурдун Г. Д., Калашников Н. В. и Стоцкий Л. Р., Международная система единиц, М., 1964.А. М. Ампер.
Советуем изучить Емкость конденсатора: единица измерения
Закон Ампера
Сила Ампера является главной составляющей закона Ампера – закона о взаимодействии электрических токов. В нём говорится, что в параллельных проводниках, в которых электрические токи текут в одном направлении, возникает сила притягивания. А в тех проводниках, в которых электрические токи текут в противоположных направлениях, возникает сила отталкивания. Также законом Ампера называют закон, который определяет силу действия магнитного поля не небольшую часть проводника, по которой протекает ток. В данном случае она определяется как результат умножения плотности тока, который идёт по проводнику, на индукцию магнитного поля, в котором проводник находится. Из самого закона Ампера сделаны выводы, что сила Ампера равняется нулю, если величина угла, расположенного между током и линией магнитной индукции, тоже будет равняться нулю. Другими словами, проводник для достижения нулевого значения должен быть расположен вдоль линии магнитной индукции.
Закон Ампера – определение
Андре Ампер в 1920 году дал определение тому, с какой силой магнитное поле влияет на проводник, помещённый в него. Он установил прямое соотношение между силой, возникающей вокруг проводника, силой тока, модулем магнитной индукции и синусом угла между вектором магнитной индукции и направлением тока.
Выражение имеет вид:
FА = B *I*L*sinα,
где:
- FА – сила Ампера, Н;
- В – модуль магнитной индукции;
- I – сила тока, А;
- L – длина отрезка проводника, м.
Определение справедливо для проводника, по которому происходит постоянно направленное движение электронов.
Что такое сила Ампера
Собственно сила ампера и является той силой действия магнитного поля на проводник, по которому идет ток. Сила Ампера вычисляется по формуле как результат умножения плотности тока, идущего по проводнику на индукцию магнитного поля, в котором находится проводник. Как результат формула силы Ампера будет выглядеть так
са=ст*дчп*ми
Где, са – сила Ампера, ст – сила тока, дчп – длина части проводника, ми – магнитная индукция.
Сила Ампера, Закон Ампера, правило левой руки:
- Сила Ампера: это сила, действующая на проводник с током, помещенный в магнитное поле
- Правило левой руки: если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению движения тока, то отогретый на 90о большой палец покажет направление силы, действующей на отрезок проводника
Как перевести киловатты в амперы и наоборот
Наличие развитой электрической сети является таким же признаком современного объекта недвижимости как водопровод, канализация и система вентиляции.
Аналогично любой сложной технической системе, электрическая проводка как комплекс характеризуется определенными численными параметрами, среди которых чаще всего упоминаются амперы и киловатты.
Связано это с тем, что внутридомовая электрическая сеть имеет фиксированное напряжение (220 и 380 В), которое полностью определяется схемой, использованной при ее построении, тогда как амперы и киловатты меняются в широких пределах.
Даже при начальных знаниях в области электротехники, а также при первичном знакомстве с принципами построения и функционирования электрической проводки становится ясным, что указанные параметры взаимозависимы.
Поэтому сразу же возникает естественное стремление свести их к одной интегральной величине или, при нецелесообразности такого перехода, установить между ними простую взаимосвязь.