Что происходит с тепловым реле, при увеличении тока нагрузки?

Характеристики реле

Что происходит с тепловым реле, при увеличении тока нагрузки?

При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ

Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:

  • диапазон токов установки;
  • климатическое исполнение;
  • режим возврата теплового реле (ручной или автоматический).

При выборе теплового реле рекомендуем учитывать и такие аспекты:

  • некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
  • устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
  • выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.

https://youtube.com/watch?v=ScjUB8LyvUc

С нами можно связаться

По телефону:

По электронной почте:

Схема подключения

Схемы подключения теплового реле в цепь могут существенно отличаться в зависимости от устройства. Однако ТР подключаются последовательным соединением с обмоткой двигателя или катушкой магнитного пускателя к нормально разомкнутому контакту, т.к. подключение такого рода позволяет защитить устройство от перегрузок. При превышении показателей потребления тока ТР отключает устройство от питания электросети.

В большинстве схем при подключении применяется постоянно разомкнутый контакт, который работает при последовательном соединении со стоповой кнопкой на управляющем пульте. В основном этот контакт маркируется буквами NC или Н3.

Нормально замкнутый контакт может применяться при подключении сигнализации о срабатывании защиты. Кроме того, в более сложных схемах этот контакт применяется для осуществления программного управления аварийной остановкой устройства с использованием микропроцессоров и микроконтроллеров.

Термореле подключить достаточно просто. Для этого нужно руководствоваться следующим принципом: ТР размещается после контакторов пускателя, но перед электродвигателем, а постоянно замкнутый контакт включается последовательным соединением со стоповой кнопкой.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/автоматическими выключателями.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания. Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подсоединение, регулировка и обозначение ТР

Что происходит с тепловым реле, при увеличении тока нагрузки?Устанавливать реле электротепловое нужно с магнитным пускателем, который соединяет и запускает двигатель. В качестве самостоятельного прибора устройство ставится на дин-рейку или монтажную панель.

Схема подключения аппарата

Схемы подключения пускателей с тепловыми видами реле зависят от типа прибора:

  • Последовательное подключение с обмоткой мотора или катушкой пускателя на нормально разомкнутый контакт (НЗ). Элемент работает, если его подключить к клавише остановки. Система применяется при необходимости оснащения двигателя защитой сигнализацией. Реле ставится после пускательных контакторов, но перед мотором, потом подсоединяется контакт НЗ.
  • Разрыв нуля пускателя нормально замкнутым контактом. Схема удобна и практична – ноль можно подключить на контакт ТР, от второго контакта подкидывается перемычка к катушке пускателя. В момент срабатывания реле происходит разрыв нуля и обесточивания пускателя.
  • Реверсивная схема. В цепи управления находится нормально замкнутый и три силовых контакта. Электродвигатель запитывается через последние. При активации защитного режима происходит обесточивание пускателя и остановка мотора.
Популярные статьи  Описание, модельный ряд, маркировка счётчика электроэнергии Меркурий

Порядок регулировки

Что происходит с тепловым реле, при увеличении тока нагрузки?

Настройка прибора производится на специализированных стендах с маломощным нагрузочным трансформатором. Нагревательные узлы подключаются на его вторичные механизмы, а напряжение управляется с помощью автотрансформатора. Токовый предел нагрузки регулируется амперметром, подсоединенным через вторичную цепь.

Проверка производится так:

  1. Поворот трансформаторной рукоятки в нулевое положение с подачей напряжения. Затем выбирают ток нагрузки ручкой и проверяют время срабатывания реле с момента погасания лампы секундомером. Норма – 140-150 сек при токе 1,5 А.
  2. Настройка токового номинала. Производится, когда токовый номинал нагревателя не совпадает с номиналом мотора. Предел регулировки – 0,75 – 1,25 от номинала нагревателя.
  3. Настройка токовой уставки.

Для последнего действия потребуется произвести расчет:

  • определить поправку на номинальный ток без компенсации температуры по формуле ±Е1 = (Iном-Iо)/СIо. Iо – ток нулевой уставки, С — цена деления эксцентрика (С = 0,05 для открытых моделей и С = 0,055 – для закрытых);
  • вычислить поправку с учетом температуры окружающей среды E2=(t – 30)/10, где t — температура;
  • рассчитать суммарную поправку, сложив полученные величины;
  • округлить результат в большую или меньшую сторону, перевести эксцентрик.

Ручная регулировка

Отрегулировать тепловое реле можно вручную. Величина тока срабатывания может устанавливаться в диапазоне от 20 до 30 % от номинала. Пользователю понадобится плавно перемещать рычаг для изменения изгиба биметаллической пластины. Ток срабатывания также регулируется после замены термического узла.

Современные коммутаторы оснащаются тестовой кнопкой для поиска поломки без задействования стенда. Используя клавишу сброса, можно обнулять настройки в автоматическом или ручном режиме. Для отслеживания состояния прибора используется индикатор.

Преимущества устройства

По своей сути, тепловое реле является автоматическим устройством отключения электрооборудования от сети питания. Но в отличие от простого автомата включения/отключения электротепловое реле имеет ряд следующих существенных преимуществ:

  • возможность регулировки времени и момента срабатывания в зависимости от тока перегрузки и длительности его воздействия на электрооборудование;
  • разные варианты коммутации: дистанционный монтаж в электрических щитах или непосредственная установка на магнитных пускателях.

К другим достоинствам тепловых реле можно отнести малые габариты, массу и, конечно же, стоимость, а также простоту конструкции и высокую эксплуатационную надежность. Определенным недостатком устройства является необходимость в периодических настройках и поверках.

Перейдем непосредственно к теме. КАК ПОДОБРАТЬ ТЕПЛОВОЕ РЕЛЕ электродвигателя ИЛИ ПРАВИЛЬНАЯ ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ ОТ ПЕРЕГРУЗКИ

Что происходит с тепловым реле, при увеличении тока нагрузки?

Читаем какой номинальный ток двигателя при подключении к сети 380 вольт (Iн).  Этот ток, как мы видим  на шильдике двигателя,  Iн = 1,94 Ампера

Выражение «величина» является условным термином, обозначающим то, какой ток может пропустить через главные рабочие контакты выбранный магнитный пускатель. При присвоении величины считается, что пускатель работает при напряжении 380 В, а его рабочий режим АС-3.

Приведу список различий приборов по их величинам (токи в зависимости от величин):

  • 0 – 6,3 А;
  • 1 – 10 А;
  • 2 – 25 А;
  • 3 – 40 А;
  • 4 – 63 А;
  • 5 – 100 А;
  • 6 – 160 А;
  • 7 – 250 А.

Величины их допустимых токов, протекающих по контактам главной цепи, различаются от тех, что я привел вот по каким принципам:

  • категория использования (она может быть АС-1 -, АС3, АС-4 и еще 8 категорий);
  • первая подразумевает чисто активную нагрузку (или с малым присутствием индуктивности);
  • вторая – для управления моторами, имеющими контактные кольца;
  • третья – работу в режиме прямого запуска движков с ротором короткозамкнутого типа и подключение оных;
  • четвертая — старт моторов, имеющих короткозамкнутый ротор, обесточивание движков, вертящихся медленно, либо недвижимых, торможение методом противотока.

Если увеличивать номер категории использования, то максимальный контактный ток главной цепи (при идентичности параметров коммутационной износостойкости) будет снижаться.

Вернемся к нашим баранам.

Тепловое Реле имеет шкалу, калиброванную в амперах. Обычно шкала соответствует  значению тока уставки (тока несрабатывания реле). Срабатывания реле происходит в пределах 5-20% от превышения тока уставки  потребляемым током электродвигателя. Т.е.

, при перегрузке электродвигателя на 5-20% (1,05*Iн — 1,2*Iн), произойдет срабатывание теплового реле в соответствии с его токовременной характеристикой.

Поэтому выбираем реле таким образом, чтобы ток несрабатывания теплового реле был на 5-10% выше от номинального тока защищаемого электродвигателя (см. таблицу ниже).

Таблица для подбора тепловых реле

0,37 РТЛ-1005 0,6…1 РТ 1305 0,6…1
0,55 РТЛ-1006 0,95…1,6 РТ 1306 1…1,6
0,75 РТЛ-1007 1,5…2,6 РТ 1307 1,6…2,5
1,5 РТЛ-1008 2,4…4 РТ 1308 2,5…4
2,2 РТЛ-1010 3,8…6 РТ 1310 4…6
3 РТЛ-1012 5,5…8 РТ 1312 5,5…8
4 РТЛ-1014 7…10 РТ 1314 7…10
5,5 РТЛ-1016 9,5…14 РТ 1316 9…13
7,5 РТЛ-1021 13…19 РТ 1321 12…18
11 РТЛ-1022 18…25 РТ 1322 17…25
15 РТЛ-2053 23…32 РТ 2353 23…32
18,5 РТЛ-2055 30…41 РТ 2355 28…36
22 РТЛ-2057 38…52 РТ 3357 37…50
25 РТЛ-2059 47…64
30 РТЛ-2061 54…74

Для большинства электродвигателей, произведенных в Китае, мы предлагаем подбирать ток несрабатывания теплового реле равным номинальному.  Подобрав тепловое реле и соответствующий ему магнитный пускатель, настраиваем тепловое реле на нужный нам ток срабатывания.

Если двигатель трехфазный – то умножаем рабочий ток на 1,25- 1,5 – это  и будет уставка теплового реле. 

Понижение напряжения и пропадание фазы

Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита. Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка. На схеме ниже это РН .

Что происходит с тепловым реле, при увеличении тока нагрузки?

Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.

Популярные статьи  Фиксированное электрооборудование: что это такое, определение, примеры

Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.

Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги. Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной. Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.

Как подобрать электродвигатель: условия

В настоящее время, использование электродвигателей достаточно широко. Данные устройства, применяются в различном оборудовании (вентиляционные системы, насосные станции или электротранспорт). Для каждого вида машин, нужен правильный выбор и настройка двигателей.

Критерии выбора:

  • Тип тока;
  • Мощность устройства;
  • Работа.

По типу электрического тока, электродвигатели разделяют на устройства, работающие на переменном и постоянном токе.

Стоит отметить, что двигатели на постоянном токе, зарекомендовали себя с лучшей стороны, но из-за необходимости установки дополнительного оборудования для обеспечения их работы, требуются и дополнительные финансовые затраты.

Двигатели, работающие на переменном токе, нашли достаточно широкое применение. Их разделяют на два вида (синхронные и асинхронные).

Синхронные устройства, используют для оборудования, в котором важно постоянное вращение (генераторы и компрессоры). Отличаются и различные характеристики синхронных двигателей

Например, скорость вращения варьируется в пределах от 120 до 1000 оборотов в минуту. Мощность устройств достигает 10 кВт.

В промышленности, распространено использование асинхронных двигателей. Стоит отметить, что данные устройства обладают более высокими показателями вращения. Для их изготовления, в основном используют алюминий, что позволяется изготавливать легкие роторы.

Исходя из того, что во время работы двигатель, производит постоянное вращение различных устройств, необходимо правильно подбирать его мощность. Стоит отметить, что для различных устройств, существует специальная формула, согласно которой и производится выбор.

Определяющим фактором нагрузки на двигатели, является режим работы. Поэтому, выбор устройства производят согласно и данной характеристике. Существует несколько режимов работы, которые маркируются (S1 – S9). Каждый из девяти режимов, подходит для определенной работы двигателя.

Схема подключения теплового реле

Чаще всего, подключение теплового реле осуществляется непосредственно к магнитному пускателю. Силовые контакты устройства позволяют выполнить его монтаж на МП без проводов. Также существуют модели тепловой защиты, которые можно установить как самостоятельный модуль на монтажную панель или DIN-рейку в электрический шкаф. На следующем рисунке представлена структурная схема подключения теплового реле в соответствии с действующим ГОСТом.

На следующем рисунке приведена схема управления электродвигателем, отключающим его от сети в случае возникновения аварийной ситуации: перегрузке по току или обрыву провода одной из фаз.

Для непосвященного человека все эти принципиальные схемы не значат ровно ничего, поэтому на следующей картинке будет представлена более доступная для понимания простым потребителем схема подключения электротеплового реле с фотографиями всех элементов, входящих в систему защиты электрических моторов от токовых перегрузок.

Коротко рассмотрим, как действует данная компоновка защиты электродвигателей. Входной автомат обеспечивает подачу одной фазы через нормально-замкнутую аварийную кнопку «Стоп» на разомкнутую кнопку «Пуск». При ее включении, напряжение питания попадается на обмотку магнитного пускателя, который последовательно включает электромотор. Все фазы питающей электросети, поступающие на электрический двигатель, проходят через обмотки реле с биметаллическими элементами. В случае увеличения тока нагрузки до максимальных значений срабатывает тепловая защита и силовая установка обесточивается.

Регулировка и пусконаладочный процесс

Заводские установленные параметры не всегда отвечают требованиям потребителя. В большинстве случаев это связано с недостаточной компрессионной силой в наивысшей точке разбора. Также может не подходить и диапазон срабатывания прессостата. В этом случае будет актуальна самостоятельная корректировка исполнительного механизма.

Что происходит с тепловым реле, при увеличении тока нагрузки?
Стандартные заводские настройки: верхний предел 2,8 атмосферы, нижний 1,4 бар. Осуществление контроля параметров производится визуально посредством манометра, входящего в стандартный комплект прессостата. Новые модели, например, Italtecnica имеют прозрачный корпус и оснащены шкалой-указателем компрессии непосредственно на реле

Для начала настройки рабочего компрессионного значения потребуется осмотреть табличку с гравировкой, где обозначены параметры электродвигателя и компрессора.

Нам нужно только наибольшее значение, которое создает прибор. Этот показатель указывает на максимальную силу давления, которую можно задавать на реле, для корректной работы всей пневмосистемы.

Если установить указанное значение (на рисунке 4,2 атм), тогда при учете всех факторов – перепады в электропитании, выработка эксплуатационного срока деталей и другое — компрессор может не достичь предельного давления, а соответственно не произойдет его отключение.

В подобном режиме рабочие элементы оборудования начнут перегреваться, затем деформироваться и в итоге плавиться.

Что происходит с тепловым реле, при увеличении тока нагрузки?
Максимальное значение эжектора должно учитываться при определении наибольшего значения реле. Этот показатель должен быть меньше номинального давления компрессора. В таком случае все элементы системы будут работать в бесперебойном режиме

Для надежной работы без отключений требуется задавать наибольшее давление выключения на реле, не достигающее номинального показателя, выгравированного на компрессоре, а именно ниже на 0,4-0,5 атм. Согласно нашему примеру – 3,7-3,8 атм.

Что происходит с тепловым реле, при увеличении тока нагрузки?
Пределы давления, при достижении которых происходит включение/отключение компрессора, регулируются единственным болтом. Чтобы не ошибиться с выбором направления для увеличения/уменьшения на металлической основе проставлены стрелки

Определив уровень, который будет задан, необходимо снять корпус реле. Под ним расположены два регулирующих элемента — малая и большая гайки (на рисунке 1,3).

Рядом есть стрелочные указатели направления, в которое будут производиться подкручивания — тем самым осуществляя сжимание и разжимание пружинного механизма (2,4).

Большой винтовой зажим и пружина предназначены для управления параметрами компрессии. При закручивании по ходу часовой стрелки, спираль сжимается — давление выключения компрессора увеличивается. Обратная регулировка – ослабляет, соответственно, снижается уровень давления для отключения.

Что происходит с тепловым реле, при увеличении тока нагрузки?
Стоит помнить: увеличивая силу компрессии выключения, мы изменяем заводские настройки, выставленные с учетом нормативных требований к эксплуатации оборудования. Перед внесением корректировок загляните в техническую документацию прибора, чтобы не превысить заявленные производителем пределы

Популярные статьи  Почему при подключении трех однофазных стабилизаторов в трехфазную сеть выбивает вводной автомат?

При воспроизведении настроек ресивер должен быть заполнен не меньше чем на 2/3.

Разобравшись в предназначении элементов, приступаем:

  1. Для обеспечения должного уровня безопасности отключаем электропитание.
  2. Изменение уровня сжатия пружин выполняется методом проворачивания гайки на несколько оборотов в необходимую сторону. На плате возле регулировочного винта большого диаметра, по стандартам, есть условные обозначение латиницей P (Pressure), меньшего – ΔР.
  3. Контроль корректировочного процесса производится визуально на манометре.

Некоторые производители для удобства выносят регулировочную арматуру для изменения номинального значения на поверхность корпуса устройства.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть: Iреле=IН*1.2…1.3

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Iреле=1.94*1.3=2.522

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

  • РТЛ-1007, с токовым диапазоном 1.5-2.6 А;
  • РТЛ-1008, токовый диапазон 2,4-4 А;
  • РТИ-1307, токовый диапазон 1,6…2,5 А;
  • РТИ-1308, токовый диапазон 2,5…4 А;
  • ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Что происходит с тепловым реле, при увеличении тока нагрузки? Тепловое реле

Как выбрать реле по характеристикам?

При подборе реле следует изначально разобраться в его основных параметрах:

  • значению номинального тока;
  • диапазона регулирования тока сработки;
  • сетевого напряжения;
  • тип и количество клемм;
  • расчетной мощности подключаемого устройства;
  • минимальной границы сработки;
  • класса устройства;
  • реакции на фазный перекос.

Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.

Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.

Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Что происходит с тепловым реле, при увеличении тока нагрузки?

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Основные характеристики токового реле

Что происходит с тепловым реле, при увеличении тока нагрузки?Главная характеристика прибора – зависимость времени срабатывания от величины протекания тока. Если имеется номинал, предельная длительность генерации – бесконечная. Увеличение показателей приводит к разрыву изоляции.

Оптимальная нагрузка на мотор должна быть не менее 1,2-1,3 сек в условиях 30%-й перегрузки. Если показатель больше, нагревается обмотка или весь двигатель. Неисправность устраняется только после полной замены оборудования.

Напряжение реле подбирается в соответствии с параметрами сети – 220 или 380 В. Нормальная защита мотора возможна только при выборе реле, предотвращающего фазный перекос.

Рейтинг
( Пока оценок нет )