Схемы подключения УЗИП
Вот две упрощенные схемы подключения УЗИП, которые приводятся во многих нормативных документах.
На первой, аппарат защиты ставится последовательно перед самим УЗИП. Он главным образом нужен для работы в аварийном режиме, когда на УЗИП происходит короткое замыкание.
При этом везде говорится, что ни в коем случае нельзя последовательно с УЗИП ставить автоматический выключатель, а нужно использовать только предохранители. Почему так?
Автомат в своей конструкции имеет соленоид (катушку), через которую проходит ток, создающий магнитное поле для срабатывания механизма и разрыва цепи. Но индуктивность катушки, помноженная на производную от тока молнии — это дополнительное напряжение, которое возникнет на самой катушке.
Представьте себе, что у вас мизерная катушка, имеющая индуктивность в 1мкГн/м. При огромной крутизне тока молнии, на этой самой катушке может появиться напряжение до 100кВ!
Кроме того, по правилам не рекомендуется, чтобы от точки подключения УЗИП до места заземления было больше 0,5м. Лишнее расстояние здесь также критично. А катушка это опять же дополнительные витки.
И это еще не учитывая воздействие импульсного тока на элементы выключателя.
Хорошо, если ставить непосредственно перед УЗИП нельзя, давайте разместим автоматический выключатель соответствующей величины параллельно. УЗИП мы “врезаем” в цепь напряжения напрямую, а защиту обеспечиваем в «голове».
Однако и здесь возникает проблема. При повреждении УЗИП вводной выключатель обесточит полностью весь объект, что опять же недопустимо на ответственных нагрузках.
Поэтому все как один и рекомендуют схему с предохранителями.
Реле напряжения
Реле напряжения, также называемые реле-прерывателями, производят размыкание электрических цепей при перепадах напряжения. После отключения питания реле через небольшие временные интервалы проверяет состояние напряжения, и при нормальных значениях возобновляет подачу тока.
Некоторые модели оснащения регуляторами, позволяющие настраивать реле под разные приборы, устанавливая верхний и нижний предел перепадов для отключения, а также время последующей активации. Существуют модели реле-прерывателей как для монтирования в электрощиток, так и для отдельной установки в розетку.
Источники бесперебойного питания (ИБП)
ИБП объединяет в себе функции сетевого фильтра и стабилизатора (кроме резервного типа), но помимо этого позволяет технике работать еще какое-то время после отключения электропитания. Бесперебойники бывают трех типов: резервные, интерактивные и с двойным преобразованием.
Резервный вариант — самое простое и дешевое решение. Он пропускает ток через LC-контур, как в хороших сетевых фильтрах, а если необходимое напряжение отсутствует, осуществляется переключение на аккумуляторы. К недостаткам резервных бесперебойников можно отнести задержку при переключении на батареи (5 – 15 миллисекунд).
Интерактивные ИБП оснащены ступенчатым стабилизатором, позволяющим поддерживать надлежащее напряжение на выходе без использования батарей, что увеличивает срок их службы. Такие источники бесперебойного питания годятся для ПК и значительной части бытовой техники.
Бесперебойники с двойным преобразованием преобразуют полученный переменный ток в постоянный, а на выходе подают снова переменный с необходимым напряжением. Аккумуляторные батареи при этом все время подключены к сети, переключение не производится. ИБП данного типа отличаются более высокой стоимостью, в то же время создают больший шум при эксплуатации и сильнее нагреваются. Применяются в основном для требовательного к надежности питания оборудования: серверов, медицинское оборудования.
На экране появляется рябь и шум
Если при запуске телевизионного оборудования наблюдается такое явление, как серая рябь или шипение, то причиной для него может послужить:
- Неисправность в антенне. Подобная поломка может быть ликвидирована тщательной настройкой или заменой. Ещё в такой ситуации требуется произвести диагностику антенного кабеля, который мог перетереться, согнуться или сломаться. Стоит произвести внимательный осмотр штекера и при необходимости выполнить его замену. Неисправность антенны может быть легко проверена путем подключения к другому устройству, которое работает исправно и не демонстрирует каких-либо неполадок. При подобной проверке сравнению подвергается качество получаемого изображения.
- Отсутствие заземления или плохое экранирование проводов проводки. Решить проблему в подобной ситуации поможет замена старых кабелей и экранирование.
- Нарушение настройки каналов. В подобной ситуации проблема устраняется путем перенастройки. При этом поломка может устраняться силами пользователя или специалиста.
Каждая проблема имеет свою специфику устранения, не зная которую не стоит производить самостоятельный ремонт. В противном случае высока вероятность нанесения ещё большего вреда телевизионному оборудованию и изображению.
Классификация помех
Все сетевые отклонения можно классифицировать по двум признакам: происхождению шумов и виду электромагнитной аномалии.
Причиной возникновения сетевых искажений являются:
- природные явления (гроза, ионизация воздуха сияниями и т.п.);
- техногенные влияния (аварии на линиях, коммутация мощных устройств и т. д.);
- электромагнитные волны природного и техногенного происхождения.
Перечисленные причины могут вызвать серию импульсных помех или волны гармонических искажений, наложенные поверх синусоидального тока.
Наличие импульсных токов в сети очень вредно сказывается на работе современных бытовых приборов, часто насыщенных электроникой. Если не применять приборы защиты, электронные устройства могут выйти из строя, не говоря уже о качестве их работы. Разумеется, чувствительное оборудование разработчики защищают внедрёнными схемами подавления помех, но нередко требуются дополнительные внешние приборы, например, бесперебойные источники питания, сетевые фильтры (рис. 1) и другие.
Рис. 1. Защитные импульсные фильтры
При радиочастотных помехах большинство бытовых приборов могут нормально работать. Но к ним чувствительны радиоприёмники, телевизоры и некоторые медицинские приборы. Впрочем, современная цифровая радиоэлектроника довольно хорошо защищена от таких искажений.
Понимание причин искажений в электрической сети помогает решать проблемы защиты оборудования, осознанно подходить к выбору оптимальных схем подавления шумов.
Чем опасны перепады напряжения
Перепад напряжения может быть вызван одновременным отключением нескольких мощных устройств, аварией на электросетях, нестабильной работой подстанции из-за перегрузки, эксплуатацией сварочного аппарата, низким качеством материалов электропроводки или ее монтажа. Нередко к существенному скачку напряжения приводит и удар молнии по линии электропередач.
Большинство перепадов незначительны и остаются незамеченными нами, но не техникой. Любой скачок, из-за которого напряжение в сети становится выше 250 Вольт, снижает срок службы подключенных устройств или дестабилизирует их работу. Даже несущественные отклонения на 5-10 %, происходящие регулярно, приводят к сбоям в управляющих блоках, сбросу настроек, возникновению помех. Перепады на 10-25 % сокращают срок службы приборов почти вдвое. А скачки напряжения до 300 Вольт выводят из строя блоки питания, управляющие и сенсорные панели, электродвигатели, сетевое оборудование.
В большинстве многоквартирных домов качество электропроводки оставляет желать лучшего, они не выдерживают нагрузки, ведь в каждой квартире одновременно работают десятки приборов. Безусловно, лучше поменять в квартире проводку, чтобы минимизировать вероятность перепадов и не довести до пожара. Но даже если нет такой возможности, обезопасить себя и родных можно.
Импульсный шум
Импульсы, составляющие импульсные помехи, имеют произвольную длительность и амплитуду, а также следуют один за одним через случайные временные промежутки.
Отличие импульсного шума от непрерывного заключается в следующем: в нем длительность импульсов гораздо меньше, чем промежутки между ними. Потому каждый новый импульс при появлении рассматривается в качестве независимого события.
При прохождении такого шума через полосовую цепь происходит размытие импульсов, то есть их расширение и слияние в непрерывный шум.
Основная трудность в локализации импульсных помех объясняется их непостоянством во времени. И не каждое диагностическое оборудование может оказаться полезным, ведь оно может использовать для анализа лишь часть спектра, а также иметь порог статических помех, при превышении которого событие будет фиксироваться как импульсная помеха. В данном случае как импульсные шумы будут приниматься радиопомехи и иные стационарные шумы, «перевалившие» за этот порог.
Определение термина
Из-за скачков напряжения техника выходит из строя
Скачок напряжения – это кратковременный значительный перепад электроэнергии, который переходит допустимые по технике безопасности нормы. В России приемлемыми считаются скачки в пределах +/- 10% от номинала за 7 дней. Например, для стандартной розетки в 220В в течение недели нормальные показатели – от 198 до 242. Различают три типа:
- дольше минуты – длительное отклонение от нормы;
- меньше минуты – кратковременные колебания;
- импульсное перенапряжение (электрики называют «броски»).
Высокочастотные помехи
Сетевые фильтры, обеспечивают сохранность вашей техники. Они включают в себя фильтр высокочастотных помех, защищающий электроприборы от различных сбоев в работе. А также в них есть и фильтр импульсных помех (защита от импульсных помех): таким образом, решаются сразу две проблемы.
Классические сетевые фильтры состоят из блока защиты, содержащего варисторы, а их вторая составляющая — емкостной или индуктивно-емкостной фильтр. Конденсатор совместно с катушкой индуктивности — это фильтр высокочастотных помех. А варисторы создают самый надежный из всех существующих на сегодняшний день фильтр импульсных помех.
Варисторы (полупроводниковое сопротивление) играют роль «ножниц», которые «обрезают» высокочастотные помехи, напряжение на уровне 800-1200 вольт и тем самым сохраняют технику, подключенную в розетки фильтра. Их целью является защита от импульсных помех. Когда импульс очень мощный, варисторы могут разрушиться, но техника не пострадает. Импульсные помехи не будут представлять угрозу для ваших электроприборов, если те подключены в сеть через сетевой фильтр.
Емкостной или индуктивно-емкостной фильтр, состоящий из конденсатора (емкостной фильтр) или конденсатора и катушки индуктивности (индуктивно-емкостной фильтр) защищают от высокочастотных помех, уменьшая их вредное воздействие. Степень уменьшения зависит от величины емкости конденсатора и индуктивности катушки.
Способы защиты
К сожалению, мы не можем управлять качеством электросети, но защитить бытовую технику вполне реально. В зависимости от того к каким искажениям чувствителен конкретный электрический прибор, выбирают соответствующий способ защиты. Снизить уровни помех помогают различные внешние устройства, встроенные электрические схемы, а также экранирование элементов конструкций и заземления.
Пример подавления помех показан на рисунке 3.
Рис. 3. График, иллюстрирующий фильтрацию тока
Эффективными являются следующие внешние устройства:
- стабилизаторы напряжения;
- ИПБ;
- преобразователи частоты;
- регулируемые трансформаторы;
- сетевые фильтры и фильтрующие каскады (принципиальная схема простого фильтра изображена на рисунке 4).
Схема сетевого фильтра Особую трудность вызывает подавление высокочастотных импульсных искажений в диапазоне нескольких десятков МГц. Часто для этих целей используют защиту, применяемую непосредственно к источнику помехи.
Высоким уровнем защиты компьютеров и другой чувствительной электроники обладают бесперебойники. На рисунке 5 показано фото источника бесперебойного питания для защиты компьютера.
Рисунок 5. ИБП
В этих устройствах реализовано несколько защитных функций, но главная из них – снабжение питанием приборов в течение нескольких минут, с последующим корректным их отключением. С целью достижения максимального уровня защиты логично отдать предпочтение бесперебойному блоку питания.
Немного о сетевых фильтрах. «Пилоты» бывают разные
Очень рекомендуется для подключения любой электроники в электросеть использовать сетевой фильтр, в обиходе – пилот. Название «пилот» пошло от первых сетевых фильтров компании «Пилот», однако по своей сути сетевыми фильтрами они не являлись. Это были скорее удлинители с лампочками. С тех пор прошел не один десяток лет, но и на современном рынке появляются подобные «удлинители с лампочками» 🙂
Чтобы Вы не попались на этот крючок, ниже я попытаюсь объяснить, на что нужно обращать внимание при покупке сетевого фильтра. Зачем нужен пилот
Сетевой фильтр предназначен для защиты цепей электропитания электронной аппаратуры от трех видов помех в электросети:
Зачем нужен пилот. Сетевой фильтр предназначен для защиты цепей электропитания электронной аппаратуры от трех видов помех в электросети:
- Всплески напряжения;
- Импульс напряжения;
- Шумовые помехи.
Проще говоря, если по электросети пойдет напряжение больше 220V, то сетевой фильтр защитит Ваш компьютер от него.
Критерии выбора.
Для любого сетевого фильтра должны быть следующие параметры:
-
Номинальное напряжение / частота — 220 V/50 Гц.
В США и европейских странах используется частота 60 Гц, в России 50 Гц. А посему будьте осторожны, не ошибитесь. Это сложно, но возможно. -
Максимальный ток нагрузки.
Дабы выбрать правильную цифру, нужно посчитать, какой ток Ваша электроника потребляет. Высчитывается по формуле: I=P\U где I – сила тока, P – мощность электроприбора, U – напряжение сети. Потребляемая мощность Вашего компьютера написана либо на блоке питания, либо в руководстве. Если ни там, ни там нет, ищите описание Вашей модели в интернете. Как вы знаете, напряжение в нашей сети равно 220 вольт, хотя я все больше убеждаюсь, что эта цифра для наших реалий очень условна. И не редкостью является наличие 240 вольт в сети, а то и большего значения, если речь идет не о крупных городах. Ситуация неприятная, я бы даже сказал, вредная, но для решения подобных проблем нужно использовать стабилизатор напряжения. -
Ослабление импульсных помех (максимальный импульсный ток помехи).
Что же такое импульсные помехи? Это когда из-за неких переключений, аварий, отключения потребителей и так далее в электрической сети происходит кратковременный скачек напряжения, причем оно возрастает в сотни раз и на доли секунды. Но даже этой доли секунды хватит, чтобы нанести вред Вашему компьютеру. Пример таких параметров: 4 кВ – 5/50 нс не менее 10 раз или 4 кВ – 1/50 мкс не менее 4 раз. Расшифровать все это можно так: Ваш сетевой фильтр сможет выдержать десяток импульсов в 4 киловольта (4000 вольт), если они длятся пять пятидесятых наносекунды и четыре импульса в 4 киловольта, которые длятся одну пятидесятую микросекунды. -
Ток помехи, выдерживаемый ограничителем.
Это токи, которые возникают при перегрузках. Их значение выражается в килоамперах. Ограничитель либо плавкий, либо автоматический. -
Максимальная поглощаемая энергия.
В дешевых моделях поглощается только фаза, а в более дорогих фаза, ноль и земля. Обозначается в джоулях. -
Уровень ограничения напряжения при токе помехи.
В данном параметре ± 100V не критично. -
Ослабление высокочастотных помех.
Наверняка у вас были случаи, когда сосед включил дрель, и на Вашем экране телевизора возникли помехи. Они возникают из-за высокочастотных помех в электросети. Данный параметр показывает, насколько хорошо сетевой фильтр сглаживает помехи в электросети на определенной частоте. Например, 0,1 МГц — 7 дБ, 1 МГц — 12,5 дБ, 10 МГц — 20,5 дБ. Чем большее значение дБ (децибел), тем больший уровень помех сможет поглотить фильтр. - Потребляемая мощность. Это мощность, которую потребляет сам сетевой фильтр. В дорогих моделях эта единица будет несколько больше, потому как лучшая защита требует больших энергозатрат.
Теперь подведем небольшой итог. Не стоит экономить на покупке сетевого фильтра. Стоит он значительно дешевле того оборудования, которое может выйти из строя из-за отсутствия фильтра. Желательно покупать фильтр в специализированных магазинах компьютерной или бытовой техники, а никак не на базаре. При покупке проверьте качество сборки — хорошая сборка зачастую означает хорошее качество начинки. Что касается рассмотренных выше параметров, то чем они выше, тем лучше.
Предохранитель или выключатель?
Плавкая вставка имеет мизерную индуктивность. На ней не наблюдается никакого падения напряжения, а значит поврежденный УЗИП в случае чего отключится как положено.
Вроде бы все правильно, в чем же здесь подвох? Представим, что при попадании молнии и импульсном перенапряжении дугогасительная камера УЗИП не справилась с сопровождающим током и устройство просто сгорело, создав короткое замыкание.
Естественно, в этот момент должна сработать плавкая вставка. О каких величинах токовых нагрузок здесь идет речь?
При выборе такого предохранителя говорится, что он должен беспрепятственно пропустить через себя импульсный ток молнии и сопровождающий его ток, до момента его гашения в УЗИП. И только потом происходит сработка, если УЗИП развалилось и не справилось со своей задачей.
Вот один из графиков номинальных токов плавкой вставки и импульсного тока молнии в кА. На нем показана величина сгорания и взрыва предохранителя при тех или иных значениях.
Что нам предлагают производители? Они говорят, самостоятельно рассчитайте ток, который пройдет через ваш УЗИП и подберите соответствующий предохранитель, чтобы он при этом сгорел.
Если в ваших условиях максимальный ток 10кА, то вам можно взять предохранитель номиналом 100А. При таком токе (10кА) или меньше, он спокойно пропустит эту величину, чтобы УЗИП воспринял весь удар на себя.
Если же УЗИП не сработает и замкнет, то плавкая вставка при этом сгорит. И вот тут-то и появляется основная проблема. За какое время она сгорит?
Устройство
Рассмотрим устройство в процессе описания действия РЗиА:
Название | Функция |
Блок мониторинга | Отслеживание электропроцессов. Параметры измеряются ТН/ТТ и узлами с подобными функциями. Выходные импульсы могут поступать напрямую на логическую часть для сравнения с прописанными пользователем величинами отклонений от уставок (нормальных значений). А также импульсы может предварительно создаваться сообщения в цифровой форме. |
Логическая часть | Сравнивает поступившие импульсы с уставками. Определяется несовпадение, принимается решение о командах на активацию защиты. |
Исполнительная схема | Постоянно в состоянии готовности для принятия команды от логической части. Производит переключение цепей ЭУ по прописанному алгоритму для недопущения поломок оснащения и ударов тока. |
Сигнальный узел | Сам пользователь органами чувств не может адекватно отслеживать чрезвычайно быстрые процессы в ЭУ. Для сохранения данных происходящих процессов используют сигнальные приборы оповещения (изображением, звуком, светом), которые также записывают в память историю. После сработки таких устройств они выставляются в исходную позицию вручную. Система позволяет сберечь данные о всех действиях. |
Помехи в электросети импульсные защита фильтр
Технологический прогресс последних десятилетий внес в жизнь человечества большое количество различных устройств и приспособлений. Сегодня многие люди не представляют возможным своё существование без компьютера, телевизора, холодильника и без различной бытовой техники.
Вся эта техника призвана помочь, а в некоторых случаях облегчить жизнь человека.
Давно известный факт – срок службы любого приспособления определяется качеством электрической сети. Повышение и понижение напряжения, различные помехи и скачки — неблагоприятные факторы, способствующие преждевременному выходу из строя любой техники. Какие существуют основные виды помех в электросети и как обезопасить себя от непредвиденных расходов?
Основные виды помех в электросети
Существует целая масса причин, из-за которых возникают различного рода помехи. В любой сети могут наблюдаться как импульсные, так и высокочастотные помехи.
Первые возникают во время включения и выключения прибора и являются наиболее опасными для бытовой техники. Физически собой они представляют скоротечное повышение амплитуды напряжения.
По своему происхождению все помехи можно разделить на два вида: вызванные природными и техногенными явлениями. Например, любая помеха может возникнуть из-за разряда молнии или из-за аварии на электрической подстанции.
Что касается высокочастотных помех, то здесь стоит отметить, что они наблюдаются в сети практически всегда. Полностью избавиться от них не представляется возможным.
Наблюдать ВЧ-помехи можно во время работы холодильника, кофеварки и других приспособлений. Передаются они не только по проводам, но и по эфиру.
Однако большой угрозы они не представляют и на срок службы домашней техники практически не влияют.
Как защитить домашние приборы от помех
На сегодняшний день существует несколько действенных способов по борьбе с различными физическими отклонениями в работе электросети:
- стабилизатор напряжения;
- источник бесперебойного питания;
- сетевые фильтры.
Стабилизатор напряжения позволяет контролировать уровень напряжение в сети и, если произойдет резкий дисбаланс, устройство прекратит подачу электричества к потребителю. Сам стабилизатор подключается между источником напряжения и самим потребителем электроэнергии.
Стабилизатор — эффективный способ по защите бытовых приспособлений. Устройство прекращает подачу электроэнергии к потребителю в случае скачка напряжения в сети и, возобновляет подачу, когда напряжение нормализуется.
Правда такой способ борьбы с помехами не всегда подходит в качестве основного
Например, при работе с компьютером пользователю важно, чтобы все несохраненные текстовые данные не исчезли
В таком случае лучше всего использовать ИБП – источник бесперебойного питания.
ИБП включает в себя обычный аккумулятор, который продолжает поддерживать компьютер в работоспособном состоянии еще некоторое время после случившихся помех и последующих перепадов напряжения.
Более дешевый способ придать домашней технике устойчивости перед помехами – сетевые фильтры. Они также хорошо справляются со своей задачей и применяют их чаще всего во время подключения крупной бытовой техники: холодильника, стиральной машины.
Как и чем измерить помехи
Измерить помехи в электросети и их прямое воздействие возможно с помощью специальных приборов. Приспособление подключается к источнику, в котором наблюдаются помехи.
При этом важно правильно проводить подготовительные работы, которые подразумевают корректное подключение прибора к сети. В противном случае возникнет погрешность в показаниях, что усложнить дальнейший порядок действий по борьбе с помехами
В противном случае возникнет погрешность в показаниях, что усложнить дальнейший порядок действий по борьбе с помехами.
Всю работу можно осуществить, например, с помощью осциллографа. Прибор включается в сеть и на дисплее спустя некоторое время отображаются показатели напряжения и другие характеристики.
Дополнительную информацию по данной теме вы можете почерпнуть из видео ниже:
Для того, чтобы решить имеющеюся проблему с помехами в электрической сети, необходимо индивидуально подходит к каждому случаю.
Однако не стоит затягивать с решением данного вопроса, так как любой непредвиденный скачок напряжения способен моментально вывести из строя незащищенную технику.
Цифровые беспроводные телефоны
Многие имеющиеся на современном рынке цифровые беспроводные телефоны работают в частотном диапазоне 2,4 ГГц или 5,8 ГГц, который также используется каналами или частотами беспроводных локальных сетей стандарта 802.11. Проблема заключается в том, что это две совершенно разные системы, которые не понимают друг друга. В результате радиосигналы от двух разных систем будут передаваться одновременно, оказывая взаимные радиочастотные помехи. В большей степени это относится к случаю, когда используются цифровые беспроводные телефоны диапазона 2,4 ГГц с технологией FHSS (Frequency Hopping Spread Spectrum – Псевдослучайная перестройка рабочей частоты). При использовании модуляции FHSS радиочастотные сигналы этих телефонов перескакивают с одной частоты на другую во всем частотном диапазоне 2,4 ГГц. Такое скачкообразное «поведение» будет оказывать стойкие радиочастотные помехи расположенной в непосредственной близости беспроводной локальной сети стандарта 802.11. Подобные источники помех могут вызвать существенные сбои в работе беспроводных локальных сетей и снижать их пропускную способность.
Характеристика радиочастотного спектра
На протяжении долгих лет было выпущено огромное количество цифровых беспроводных телефонов. Они широко используются в домах и офисах, и также являются источником радиочастотных помех, влияющих на работу беспроводных локальных сетей стандарта 802.11.
На рисунках ниже показаны характеристики радиочастотного спектра для цифровых беспроводных телефонов 2,4 ГГц DSS, 2,4 ГГц FHSS, 5,8 ГГц DSS, и 5,8 ГГц FHSS, соответственно.
Характеристика радиочастотного спектра беспроводного телефона 2,4 ГГц DSS
(Power (dBm) = Мощность (дБм), Channel = Канал, Max-Hold = Максимальный уровень с удержанием, Max = Максимальный уровень, Avg = Средний уровень)
Характеристика радиочастотного спектра беспроводного телефона 2,4 ГГц FHSS
(Power (dBm) = Мощность (дБм), Channel = Канал, Max-Hold = Максимальный уровень с удержанием, Max = Максимальный уровень, Avg = Средний уровень)
Характеристика радиочастотного спектра беспроводного телефона 5,8 ГГц DSS
(Power (dBm) = Мощность (дБм), Channel = Канал, Max-Hold = Максимальный уровень с удержанием, Max = Максимальный уровень, Avg = Средний уровень)
Характеристика радиочастотного спектра беспроводного телефона 5,8 ГГц FHSS
(Power (dBm) = Мощность (дБм), Frequency (GHz) = Частота (ГГц), Max-Hold = Максимальный уровень с удержанием, Max = Максимальный уровень, Avg = Средний уровень)
Воздействие на сеть WLAN 802.11
Существует множество цифровых беспроводных телефонов диапазонов 2,4/5 ГГц, которые выпускаются разными производителями. Они широко используется в домах и офисах, где развернуты беспроводные локальные сети стандарта 802.11. Чтобы решить проблему с помехами от беспроводных телефонов диапазона 2,4/5 ГГц, необходимо сначала идентифицировать и определить их местонахождение в своей беспроводной сети.
Рекомендуемые действия
После успешного определения местоположения оказывающих помехи беспроводных телефонов для сведения к минимуму или устранения их радиочастотных помех сети WLAN стандарта 802.11 можно предпринять следующие действия:
- Если цифровой телефон использует технологию FHSS, не тратьте время на переключение каналов точки доступа, так как радиочастотные сигналы от цифровых беспроводных телефонов будут передаваться по всем каналам или на всех частотах их рабочей полосы. Простая настройка канала точки доступа не является решением проблемы.
- Если у вас беспроводная локальная сеть стандарта 802.11, избегайте или прекратите использование беспроводных телефонов в тех диапазонах, в которых работает сеть 802.11. Вместо этого, замените их телефонами DECT нового поколения, которые не используют частотные диапазоны 2,4 ГГц или 5 ГГц.
- Если оптимальная пропускная способность сети WLAN не страдает, можно продолжать использовать свои беспроводные телефоны 2,4/5 ГГц вместе с беспроводной локальной сетью 802.11. Но постарайтесь при этом обеспечить максимальное расстояние между устройствами беспроводной локальной сети и базами беспроводных телефонов. Это позволит свести к минимуму оказываемые ими друг на друга радиочастотные помехи.